Advertisement

Effect of yttrium insertion on the structural, optical, vibrational and dielectric properties of 0.3Bi1−yYyFeO3–0.7Ba0.8Sr0.2TiO3 ceramics

  • Amel KharoufEmail author
  • Ouadji Hayet
  • Abdelhedi Aydi
  • Kamel Khirouni
Original Paper
  • 2 Downloads

Abstract

Perovskite ceramics [Ba0.8Sr0.2]1−x[Bi1−yYy]xTi1−xFexO3 with x = 0.3 and 0.05 < y < 0.15 are synthesized by solid-state solution in order to study the effect of yttrium insertion on the physical properties of this material. The XRD patterns showed the formation of single tetragonal phase without any impurities. Using UV–Vis spectroscopy, the absorbance and reflectance are highlighted. In fact, we note a blueshift on wavelength and the energy band gap is increased with a high doping content. Besides, Raman spectra display a drop in mode intensities, which is followed by the rise of yttrium that can lead to a fluctuation in the atomic structure. Furthermore, the permittivity and loss dielectric are studied by impedance spectroscopy, revealing that both decrease with rising frequency indicating, as a result, a dielectric dispersion. Finally, the study of permittivity dielectric as a function of temperature exhibits the presence of G-type antiferromagnetic transition.

Keywords

Solid-state reaction Structural analysis Optical properties Raman spectra Dielectric response Ba0.8Sr0.2TiO3 BiFeO3 

PACS Nos.

77.80.Bh 61.10.-i 77.84.-s 78.40.-q 78.30.-j 

Notes

References

  1. [1]
    G F Teixeira, T R Wright, D C Manfroi, E Longo, J A Varela and M A Zaghete Mater. Lett. 139 443 (2015)CrossRefGoogle Scholar
  2. [2]
    A Amouri, J Roquette, B Hehlen, J L Sauvajol and H Khemakhem Ceram. Int. 40 8219 (2014)CrossRefGoogle Scholar
  3. [3]
    A S Bhalla, R Guo and R Roy Mater. Res. Innov. 4 3 (2000)CrossRefGoogle Scholar
  4. [4]
    C D Chandler, C Roger and M J H Smith Chem. Rev. 93 1205 (1993)CrossRefGoogle Scholar
  5. [5]
    M Ben Abdessalem, S Aydi, A Aydi, N Abdelmoulla, Z Sassi and H Khemakhem Appl. Phys. A 123 583 (2017)CrossRefGoogle Scholar
  6. [6]
    M Zannen, H Khemakhem, A Kabadou and M Es-Souni J. Alloys Compd. 55 56 (2013)CrossRefGoogle Scholar
  7. [7]
    A Aydi, H Khemakhem, A Simon, D Michau and R Von Der Muhll J. Alloys Compd. 484 356 (2009)CrossRefGoogle Scholar
  8. [8]
    A Aydi, S Chkoundali, H Khemakhem, A Simon and R Von Der Muhll J. Alloys Compd. 465 222 (2008)CrossRefGoogle Scholar
  9. [9]
    L Ben Abdessalem, M Ben Abdessalem, A Aydi and Z Sassi J. Mater Sci. Mater Electron. 28 14264 (2017)Google Scholar
  10. [10]
    H Abdelkefi, H Khemakhem, G Velu, J C Carru and RV Muhll J. Alloys Compd 399 1 (2005)CrossRefGoogle Scholar
  11. [11]
    S Kongtaweelert, D C Sinclair and S Panichphant Curr. Appl. Phys. 6 474 (2006)ADSCrossRefGoogle Scholar
  12. [12]
    B Wodecka-Dus and D Czekaj Arch. Metall. Mater. 56 1127 (2011)CrossRefGoogle Scholar
  13. [13]
    G Catalan and J F Scott Adv. Mater. 21 2463 (2009)CrossRefGoogle Scholar
  14. [14]
    V Koval, I Skorvanek, M Reece, L Mitoseriu and H Yan J. Eur. Ceram. Soc. 34 641 (2014)CrossRefGoogle Scholar
  15. [15]
    C Wu, J Wei and F Kong J. Mater. Sci. Mater. Electron. 24 1530 (2013)Google Scholar
  16. [16]
    H Singh and K L Yadav Ceram. Int. 41 9285 (2015)CrossRefGoogle Scholar
  17. [17]
    P Tirupathi and A Chandra J. Alloys Compd. 564 151 (2013)CrossRefGoogle Scholar
  18. [18]
    M M El-Desoky, M S Ayoua, M M Mostafa and M A Ahmed J. Magn. Magn. Mater. 404 68 (2016)ADSCrossRefGoogle Scholar
  19. [19]
    S Vura, P S Anil Kumar, A Senyshyn and R Ranjan J. Magn. Magn. Mater. 365 76 (2014)ADSCrossRefGoogle Scholar
  20. [20]
    X K Chen, Y J Wu, J Zhang and X J Chen Sci. China Phys. Mech. Astron. 55 404 (2012)CrossRefGoogle Scholar
  21. [21]
    F Huang, X Lu, W Lin, X Wu, Yi Kan and J Zhu Appl. Phys. Lett. 89 242914 (2006)ADSCrossRefGoogle Scholar
  22. [22]
    J S Kim, C II Cheon, C H Lee and P W Jang J. Appl. Phys. 96 468 (2004)ADSCrossRefGoogle Scholar
  23. [23]
    V A Murashov, D N Rakov, V M Ionov, I S Dubenko, Y V Titov and V S Gorelik Ferroelctrics 162 11 (1994)CrossRefGoogle Scholar
  24. [24]
    U Hiroshi, U Risako, F Hiroshi and S Koda J. Appl. Phys. 100 014106 (2006)CrossRefGoogle Scholar
  25. [25]
    S R Das, P Bhattacharya, R N P Choudhary and R S Katiyar J. Appl. Phys. 99 066107 (2006)ADSCrossRefGoogle Scholar
  26. [26]
    Z V Gabbasova, M D Kuz’min, A K Zvezdin, I S Dubenko, V A Murashov, D N Rakov and I B Krynetsky Phys. Lett. A 158 491 (1991)ADSCrossRefGoogle Scholar
  27. [27]
    R K Mishra, D K Pradhan, R N P Choudhary and A Banerjee J. Phys. Condens. Matter 20 045218 (2008)ADSCrossRefGoogle Scholar
  28. [28]
    S T Zhang, Y Zhang, M H Lu, C L Du, Y F Chen, Z G Liu, Y Y Zhu, N B Ming and X Q Pan Appl. Phys. Lett. 88 162901 (2006)ADSCrossRefGoogle Scholar
  29. [29]
    S Karimi, I M Reaney, Y Han, J Pokorny and I Sterianou J. Mater. Sci. 44 5102 (2009)ADSCrossRefGoogle Scholar
  30. [30]
    J Rodriguez-Carvajal, Program Fullprof, Laboratoire Leon Brillouin, CEA-CNRS, version Avril 2008, LLB-LCSIM (2008)Google Scholar
  31. [31]
    B D Cullity Elements of X-Ray Diffractions (Reading: Addison-Wesley) (1978) p 102Google Scholar
  32. [32]
    S Aydi, M Nouiri, A Aydi and H Khemakhem Ceram. Int. 41 13607 (2015)CrossRefGoogle Scholar
  33. [33]
    L M S Medina, G A Jorge and R M Negri J. Alloys Compd. 592 306 (2014)CrossRefGoogle Scholar
  34. [34]
    H Ghoudi, S Chkoundali, A Aydi and K. Khirouni Appl. Phys. A 123 703 (2017)ADSCrossRefGoogle Scholar
  35. [35]
    J Wei, Y Liu, X Bai, C Li, Y Liu, Z Xu, P Gemeiner, R Haumont, I C Infante and B Dkhil Ceram. Int. 42 13395 (2016)CrossRefGoogle Scholar
  36. [36]
    M Zhong, N P Kumar, E Sagar, Z Jian, H Yemin and P V Reddy Mater. Chem. Phys. 173 126 (2016)CrossRefGoogle Scholar
  37. [37]
    C Fu, C Yang, H Chen, Y Wang and L Hu Mater. Sci. Eng. B 119 185 (2005)CrossRefGoogle Scholar
  38. [38]
    J B Goodenough Phys. Rev. 100 564 (1955)ADSCrossRefGoogle Scholar
  39. [39]
    M Ganguli, S K Rout, T P Sinha, S K Sharma, H Y Park, C W Ahn and I W Kim J. Alloys Compd. 579 473 (2013)CrossRefGoogle Scholar
  40. [40]
    V Verma, A Beniwal, A Ohlan and R Tripathi J. Magn. Magn Mater. 394 385 (2015)ADSCrossRefGoogle Scholar
  41. [41]
    F Ghribi, L El MIR, K Omri and K Djessas Optik 127 3688 (2016)Google Scholar
  42. [42]
    A Bazmara and S Mohammad Nejad Optik 125 5733 (2014)ADSCrossRefGoogle Scholar
  43. [43]
    Y F You, C H Xu, S S Xu, S Cao, J P Wang, Y B Huang and S Q Shi Ceram. Int. 40 8659 (2014)CrossRefGoogle Scholar
  44. [44]
    L E Brus J. Chem. Phys. 79 5566 (1983)ADSCrossRefGoogle Scholar
  45. [45]
    B Bhushan, Z Wang, J V Tol, N S Dalal, A Basumallick, N Y Vasanthacharya, S Kumar and D Das J. Am. Ceram. Soc. 95 1985 (2012)CrossRefGoogle Scholar
  46. [46]
    Z Zhang, P Wu, L Chen and J L Wang Appl. Phys. Lett. 96 012905 (2010)ADSCrossRefGoogle Scholar
  47. [47]
    A Mukherjee, Sk M Hossain, M Pal and S Basu Appl. Nanosci. 2 305 (2012)ADSCrossRefGoogle Scholar
  48. [48]
    Y Shiratori, C Pithan, J Dornseiffer and R Waser J. Raman Spectrosc. 38 1288 (2007)ADSCrossRefGoogle Scholar
  49. [49]
    A Jaiswal, R Das, T Maity, K Vivekanand, A Adyanthaya and P Poddar J. Phys Chem. C 114 12432 (2010)CrossRefGoogle Scholar
  50. [50]
    H Khelifi, I Zouari, A AL-Hajry, N Abdelmoula, D Mezzane and H Khemakhem Ceram. Int. 41 12958 (2015)CrossRefGoogle Scholar
  51. [51]
    P S Dobal, A Dixit, R S Katiyar, D Garcia, R Guo and A S Bhalla J. Raman Spectrosc. 32 147 (2001)ADSCrossRefGoogle Scholar
  52. [52]
    T Durga Rao, T Karthik and S Asthana J. Rare Earths 31 370 (2013)Google Scholar
  53. [53]
    A Lahmar J. Magn. Magn. Mater. 439 30 (2017)ADSCrossRefGoogle Scholar
  54. [54]
    J Zouari, Z Sassi, L Sevegrat, V Perin, S Zghal, N Abdelmoulla, L Lebrun and H Khemakhem J. Electron. Mater. 46 4662 (2017)ADSCrossRefGoogle Scholar
  55. [55]
    H O Rodrigues, G F M Pires Junior, J S Almeida, E O Sancho, A C Ferreira, M A S Silva and A S B Sombra J. Phys. Chem. Solids 71 1329 (2010)ADSCrossRefGoogle Scholar
  56. [56]
    X J Xi, S Y Wang, W F Liu, H J Wang, F Guo, X Wang, J Gao and D J Li J. Alloys Compd 603 224 (2014).CrossRefGoogle Scholar
  57. [57]
    P H Xiang, Y Kinemuchi, T Nagaoka and K Watari J. Mater. Lett. 59 3590 (2005)CrossRefGoogle Scholar
  58. [58]
    R K Mishra, D K Pradhan, R N P Choudhary and A Banerjee J. Phys. Condens. Matter. 20 045218 (2008)ADSGoogle Scholar
  59. [59]
    J Wang, T Zhang, N Wan and J Xiang J. Mater. Sci. Mater. Electron. 19 1184 (2008)Google Scholar
  60. [60]
    D R Patil, S A Lokare, R S Devan, S S Chougule, Y D Kolekar and B K Chougule J. Phys. Chem. Solids 68 1522 (2007)ADSCrossRefGoogle Scholar
  61. [61]
    C M Kanamadi, B K Das, C W Kim, D I Kang, H G Cha, E VS Ji,A P Jadhav, B-E Jun, J H Jeong, B C Choi, B K Chouguler and Y S Kong Mater. Chem. Phys. 116 6 (2009)CrossRefGoogle Scholar
  62. [62]
    J Liu, X Q Liu and X M Chen J. Appl. Phys. 119 204102 (2016)ADSCrossRefGoogle Scholar
  63. [63]
    M A Ahmed, S F Mansour, S I El-Dek and M M Karamany J. Rare Earths 34 495 (2016)CrossRefGoogle Scholar
  64. [64]
    Y Chaudhari, C M Mahajan, A Singh, P Jagtap, R Chatterjee and S Bendre J. Magn. Magn. Mater. 395 329 (2015)ADSCrossRefGoogle Scholar
  65. [65]
    S M Mane, P M Trimali, B Ranjit, M Khan, N Khan, A N Tarale, S B Kulkarni Solid State Sci. 81 43, (2018)ADSCrossRefGoogle Scholar
  66. [66]
    E Cai, Q Liu, S Zhou, Y Zhu and A Xue J. Alloys Compd. 726 1168 (2017)CrossRefGoogle Scholar
  67. [67]
    G K Williamson, W H Hall, Acta Metall. 1 22 (1953)CrossRefGoogle Scholar
  68. [68]
    F Bahri and H Khemakhem Ceram. Int. 39 7571 (2013)CrossRefGoogle Scholar
  69. [69]
    S EL Kossi, F I H Rhouma J Dhahri and K Khirouni Physica B 440 118 (2014)ADSCrossRefGoogle Scholar
  70. [70]
    P C Sati, M Arora, S Chauhan, M Kumar and S Choker Ceram. Int. 40 7805 (2014)CrossRefGoogle Scholar
  71. [71]
    M M Costa, G F M Pires-Junior and A S B Sombra Mater. Chem. Phys. 123 35 (2010)CrossRefGoogle Scholar
  72. [72]
    M M Kumar, A Srinivas and S V Suryanarayana J. Appl. Phys. 87 855 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Amel Kharouf
    • 1
    Email author
  • Ouadji Hayet
    • 1
    • 2
  • Abdelhedi Aydi
    • 2
  • Kamel Khirouni
    • 1
  1. 1.Laboratoire de Physique des Matériaux et des Nanomatériaux Appliqués à l’Environnement, (LaPhyMNE), Faculté des Sciences de GabèsUniversité de GabèsGabèsTunisia
  2. 2.Laboratoire des Matériaux Multifonctionnels et Applications (LAMMA), Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations