The analysis of gravimeter performance by applying the theory of covariance functions

  • J. Skeivalas
  • R. ObuchovskiEmail author
  • A. Kilikevičius
Original Paper


In this paper, an analysis of the spread of random extraneous low-frequency (50 Hz) vibrations excited in a gravimeter body is presented. Further, their influence on the gravimeter scale reference system is determined by applying the theory of covariance function. The data on the measurement of strength of random extraneous vibrations in fixed points excited in the gravimeter body were recorded on the time scale in the form of arrays using a three-axis accelerometer. High-frequency (2 and 20 kHz) noise vibrations were also used to modulate the gravimeter scale data. While processing the results of measuring the strength of random extraneous vibrations and the data arrays on the reference system, estimates of autocovariance and cross-covariance functions by changing the quantisation interval on the time scale were calculated. Software developed within the MATLAB 7 package was applied for the calculations.


Gravimeter Vibration signals Covariance function Quantisation interval 


91.10.P− 91.10.Pp 43.40.Yq 



  1. [1]
    N Cardoulas, A C Bird and A I Lawan Photogramm. Eng. Remote Sens. 62(10) 1173 (1996)Google Scholar
  2. [2]
    M Ekstrom, A McEwen Photogramm. Eng. Remote Sens. 56(4) 453 (1990)ADSGoogle Scholar
  3. [3]
    I A Muhammad, U S Muhammad, A Ishfaq Signal, Image Video Process. 12(2) 379 (2018)CrossRefGoogle Scholar
  4. [4]
    G Horgan Photogramm and Remote Sens. 64(12) 1171 (1998)Google Scholar
  5. [5]
    B Hunt, T W Ryan, F A Gifford Photogramm. Eng. Remote Sens. 59(7) 1161 (1993)Google Scholar
  6. [6]
    J P Antoine Rev. Cienc. Mat. (La Habana) 18 113 (2000)Google Scholar
  7. [7]
    D E Dutkay, P E T Jorgensen Rev. Mat. Iberoam. 22 131 (2004)Google Scholar
  8. [8]
    K R Koch Einführung in die Byes-Statistik. (Berlin: Springer), p 224 (2000)Google Scholar
  9. [9]
    J Skeivalas Theory and Practice of GPS Networks. (Vilnius: Technika), p 287 (2008)Google Scholar
  10. [10]
    A Kilikevičius, M Jurevičius, J Skeivalas, K Kilikevičienė, V Turla Signal Image Video Process. 10 1287 (2016)CrossRefGoogle Scholar
  11. [11]
    A Sahnoune, D Berkani Signal Image Video Process. 12(7) 1273 (2018)CrossRefGoogle Scholar
  12. [12]
    S O Chen, M M Balasooriya Signal Image Video Process. 12(2) 363 (2018)CrossRefGoogle Scholar
  13. [13]
    A Kilikevičius, J Skeivalas, M Jurevičius, V Turla, K Kilikevičienė, J Bureika, A Jakstas Indian J. Phys. 91 1077 (2017)ADSCrossRefGoogle Scholar
  14. [14]
    J Skeivalas, V Turla, M Jurevicius, G Viselga Indian J. Phys. 92 417 (2018)ADSCrossRefGoogle Scholar
  15. [15]
    B Rubina, J Anupriya, K Suneel Indian J. Phys. 89 (10) 1077 (2015)ADSCrossRefGoogle Scholar
  16. [16]
    S Davood, A Tahajjodi Indian J. Phys. 91(11) 1447 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Institute of GeodesyVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Institute of Mechanical ScienceVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations