Advertisement

Possible scenarios for single, double, or multiple kinetic freeze-out in high-energy collisions

  • M Waqas
  • F-H LiuEmail author
  • S Fakhraddin
  • M A Rahim
Original Paper
  • 1 Downloads

Abstract

Transverse momentum spectra of different types of particles produced in mid-rapidity interval in central and peripheral gold–gold (Au–Au) collisions, central and peripheral deuteron–gold (d–Au) collisions, and inelastic (INEL) or non-single-diffractive (NSD) proton–proton (pp) collisions at the Relativistic Heavy Ion Collider (RHIC), as well as in central and peripheral lead–lead (Pb–Pb) collisions, central and peripheral proton–lead (p–Pb) collisions, and INEL or NSD pp collisions at the Large Hadron Collider (LHC) are analyzed by the blast-wave model with Boltzmann–Gibbs statistics. The model results are largely consist with the experimental data in special transverse momentum ranges measured by the PHENIX, STAR, ALICE, and CMS Collaborations. It is showed that the kinetic freeze-out temperature of emission source is dependent on particle mass, which reveals the scenario for multiple kinetic freeze-out in collisions at the RHIC and LHC. The scenario for single or double kinetic freeze-out is not observed in this study.

Keywords

Kinetic freeze-out temperature Scenario for multiple kinetic freeze-out High-energy collisions 

PACS Nos.

25.75.Ag 25.75.Dw 24.10.Pa 

Notes

Acknowledgements

Communications from Edward K. Sarkisyan-Grinbaum are highly acknowledged. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575103 and 11747319, the Chinese Government Scholarship (China Scholarship Council), the Shanxi Provincial Natural Science Foundation under Grant No. 201701D121005 (China), the Fund for Shanxi “1331 Project” Key Subjects Construction (China), and the Grant of Scientific Research Deanship at Qassim University (Kingdom of Saudi Arabia).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. [1]
    A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 772 167 (2006)ADSCrossRefGoogle Scholar
  2. [2]
    J Cleymans, H Oeschler, K Redlich and S Wheaton Phys. Rev. 73 034905 (2006)ADSGoogle Scholar
  3. [3]
    A Andronic, P Braun-Munzinger and J Stachel Acta Phys. Pol. B 40 1005 (2009)ADSGoogle Scholar
  4. [4]
    A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 834 237c (2010)ADSCrossRefGoogle Scholar
  5. [5]
    H-L Lao, F-H Liu, B-C Li and M-Y Duan Nucl. Sci. Tech. 29 82 (2018)CrossRefGoogle Scholar
  6. [6]
    H C Song, Y Zhou and K Gajdošová Nucl. Sci. Tech. 28 99 (2017)CrossRefGoogle Scholar
  7. [7]
    E Schnedermann, J Sollfrank and U Heinz Phys. Rev. C 48 2462 (1993)ADSCrossRefGoogle Scholar
  8. [8]
    B I Abelev et al. [STAR Collaboration] Phys. Rev. C 79 034909 (2009)Google Scholar
  9. [9]
    B I Abelev et al. [STAR Collaboration] Phys. Rev. C 81 024911 (2010)Google Scholar
  10. [10]
    S S Adler et al. [PHENIX Collaboration] Phys. Rev. C 69 034909 (2004)Google Scholar
  11. [11]
    A Adare et al. [PHENIX Collaboration] Phys. Rev. C 88 024906 (2013)Google Scholar
  12. [12]
    S S Adler et al. [PHENIX Collaboration] Phys. Rev. C 75 024909 (2007)Google Scholar
  13. [13]
    A Adare et al. [PHENIX Collaboration] Phys. Rev. C 83 024909 (2011)Google Scholar
  14. [14]
    A Adare et al. [PHENIX Collaboration] Phys. Rev. C 83 064903 (2011)Google Scholar
  15. [15]
    B I Abelev et al. [STAR Collaboration] Phys. Rev. Lett. 99 112301 (2007)Google Scholar
  16. [16]
    J Adams et al. [STAR Collaboration] Phys. Rev. Lett. 98 062301 (2007)Google Scholar
  17. [17]
    J Adams et al. [STAR Collaboration] Phys. Lett. B 612 181 (2005)Google Scholar
  18. [18]
    B I Abelev et al. [STAR Collaboration] Phys. Rev. C 75 064901 (2007)Google Scholar
  19. [19]
    B Abelev et al. [ALICE Collaboration] Phys. Rev. Lett. 109 252301 (2012)Google Scholar
  20. [20]
    B Abelev et al. [ALICE Collaboration] Phys. Rev. C 88 044910 (2013)Google Scholar
  21. [21]
    B Abelev et al. [ALICE Collaboration] Phys. Rev. C 91 024609 (2015)Google Scholar
  22. [22]
    B Abelev et al. [ALICE Collaboration] Phys. Lett. B 728 216 (2014) and Erratum Phys. Lett. B 734 409 (2014)Google Scholar
  23. [23]
    B Abelev et al. [ALICE Collaboration] Phys. Lett. B 728 25 (2014)Google Scholar
  24. [24]
    J Adam et al. [ALICE Collaboration] Eur. Phys. J. C 76 245 (2016)Google Scholar
  25. [25]
    J Adam et al. [ALICE Collaboration] Phys. Lett. B 758 389 (2016)Google Scholar
  26. [26]
    J Adam et al. [ALICE Collaboration] Eur. Phys. J. C 75 226 (2015)Google Scholar
  27. [27]
    B Abelev et al. [ALICE Collaboration] Eur. Phys. J. C 72 2183 (2012)Google Scholar
  28. [28]
    V Khachatryan et al. [CMS Collaboration] JHEP 05 064 (2011)Google Scholar
  29. [29]
    Z B Tang, Y C Xu, L J Ruan, G van Buren, F Q Wang and Z B Xu Phys. Rev. C 79 051901(R) (2009)Google Scholar
  30. [30]
    S Takeuchi, K Murase, T Hirano, P Huovinen and Y Nara Phys. Rev. C 92 044907 (2015)ADSCrossRefGoogle Scholar
  31. [31]
    H Heiselberg and A M Levy Phys. Rev. C 59 2716 (1999)ADSCrossRefGoogle Scholar
  32. [32]
    U W Heinz Lecture Notes for Lectures Presented at the 2nd CERN—Latin-American School of High-Energy Physics (1–14 June 2003, San Miguel Regla, Mexico), arXiv:hep-ph/0407360 (2004)
  33. [33]
    R Russo PhD Thesis (Universita degli Studi di Torino, Italy) (2015), arXiv:1511.04380 [nucl-ex] (2015)
  34. [34]
    H-R Wei, F-H Liu and R A Lacey Eur. Phys. J. A 52 102 (2016)ADSCrossRefGoogle Scholar
  35. [35]
    H-L Lao, H-R Wei, F-H Liu and R A Lacey Eur. Phys. J. A 52 203 (2016)ADSCrossRefGoogle Scholar
  36. [36]
    H-R Wei, F-H Liu and R A Lacey J. Phys. G 43 125102 (2016)ADSCrossRefGoogle Scholar
  37. [37]
    J Cleymans and D Worku Eur. Phys. J. A 48 160 (2012)ADSCrossRefGoogle Scholar
  38. [38]
    H Zheng and L L Zhu Adv. High Energy Phys. 2016 9632126 (2016)CrossRefGoogle Scholar
  39. [39]
    S Zhang, Y G Ma, J H Chen and C Zhong Adv. High Energy Phys. 2015 460590 (2015)CrossRefGoogle Scholar
  40. [40]
    A Bialas, W Florkowski and K Zalewski J. Phys. G 42 045001 (2015)ADSCrossRefGoogle Scholar
  41. [41]
    X Sun, H Masui, A M Poskanzer and A Schmah Phys. Rev. C 91 024903 (2015)ADSCrossRefGoogle Scholar
  42. [42]
    W Florkowski Acta Phys. Pol. B  47 2241 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    J Cimerman, B Tomasik, M Csanad and S Lokos Eur. Phys. J. A 53 161 (2017)ADSCrossRefGoogle Scholar
  44. [44]
    R Odorico Phys. Lett. B 118 151 (1982)ADSCrossRefGoogle Scholar
  45. [45]
    G Arnison et al. [UA1 Collaboration] Phys. Lett. B 118 167 (1982)Google Scholar
  46. [46]
    T Mizoguchi, M Biyajima and N Suzuki Int. J. Mod. Phys. A 32 1750057 (2017)ADSCrossRefGoogle Scholar
  47. [47]
    R Hagedorn Riv. Nuovo Cimento 6 1 (1983)MathSciNetCrossRefGoogle Scholar
  48. [48]
    B Abelev et al. [ALICE Collaboration] Eur. Phys. J. C 75 1 (2015)Google Scholar
  49. [49]
    K Aamodt et al. [ALICE Collaboration] Phys. Lett. B 693 53 (2010)Google Scholar
  50. [50]
    A De Falco [for the ALICE Collaboration] J. Phys. G 38 124083 (2011)Google Scholar
  51. [51]
    I Abt et al. [HERA-B Collaboration] Eur. Phys. J. C 50 315 (2007)Google Scholar
  52. [52]
    B Abelev et al. [ALICE Collaboration] Phys. Lett. B 710 557 (2012)Google Scholar
  53. [53]
    B Abelev et al. [ALICE Collaboration] Phys. Lett. B 718 295 (2012) and Erratum Phys. Lett. B 748 472 (2015)Google Scholar
  54. [54]
    I Lakomov [for the ALICE collaboration] Nucl. Phys. A 931 1179 (2014)Google Scholar
  55. [55]
    B Abelev et al. [ALICE Collaboration] Phys. Lett. B 708 265 (2012)Google Scholar
  56. [56]
    S Chatterjee and B Mohanty Phys. Rev. C 90 034908 (2014)ADSCrossRefGoogle Scholar
  57. [57]
    D Thakur, S Tripathy, P Garg, R Sahoo and J Cleymans Adv. High Energy Phys. 2016 4149352 (2016)CrossRefGoogle Scholar
  58. [58]
    S Chatterjee, S Das, L Kumar, D Mishra, B Mohanty, R Sahoo and N Sharma Adv. High Energy Phys. 2015 349013 (2015)CrossRefGoogle Scholar
  59. [59]
    S Chatterjee, B Mohanty and R Singh Phys. Rev. C 92 024917 (2015)ADSCrossRefGoogle Scholar
  60. [60]
    H-L Lao, F-H Liu, B-C Li, M-Y Duan and R A Lacey, Nucl. Sci. Tech. 29 164 (2018)CrossRefGoogle Scholar
  61. [61]
    J D Bjorken Phys. Rev. D 27 140 (1983)ADSCrossRefGoogle Scholar
  62. [62]
    K Okamoto and C Nonaka Eur. Phys. J. C 77 383 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina
  2. 2.Physics Department, College of Science and Arts in Riyadh Al-KhabraQassim UniversityQassimKingdom of Saudi Arabia
  3. 3.Physics Department, Faculty of ScienceSana’a UniversitySana’aRepublic of Yemen

Personalised recommendations