Advertisement

The effect of the one-body Hamiltonian on the statistical fluctuations of the nuclear energy spectrum in 138Ba using the context of the nuclear shell model

  • Adel K. HamoudiEmail author
  • Shatha F. Murad
Original Paper
  • 5 Downloads

Abstract

The effect of the one-body Hamiltonian on the statistical fluctuations of the nuclear energy spectrum in 138Ba is examined via the framework of the nuclear shell model, using an effective interaction of N82K for six valence protons in the N82-model space with a 132Sn core. The level density for considered class of states is seen to have a Gaussian shape. The spectral fluctuations (i.e., the nearest-neighbors level spacing distribution and the \( \Delta_{3} \) statistic) formed with normal value of single-particle energies are well described by the Gaussian orthogonal ensemble of random matrices. An obvious quantum sign of breaking the chaoticity is seen with doubling the value of single-particle energies.

Keywords

Quantum chaos Regular-to-chaos transition Spectral fluctuations Level density distributions Shell model calculations in the N82-model space 

PACS Nos.

24.60.Lz 21.60.Cs 21.10.Ky 

Notes

Acknowledgements

The authors would like to express their thanks to Professor B. A. Brown of the National Superconducting Cyclotron Laboratory, Micihigan State University, for providing the computer code OXBASH.

References

  1. [1]
    F Haak (2001) Quantum Signature Of Chaos, 2nd enlarged ed. (Berlin: Springer)CrossRefGoogle Scholar
  2. [2]
    O Bohigas, M J Giannoni and C Schmit Phys. Rev. Lett. 52 1 (1986)ADSCrossRefGoogle Scholar
  3. [3]
    S Heusler, S Muller, A Altland, P Braun and F Haak Phys. Rev. Lett. 98 044103 (2007)ADSCrossRefGoogle Scholar
  4. [4]
    M L Mehta (2004) Random Matrices, 3nd ed. (New York: Academic)zbMATHGoogle Scholar
  5. [5]
    T Papenbrock and H A Weidenmuller Rev. Mod. Phys. 79 997 (2007)ADSCrossRefGoogle Scholar
  6. [6]
    C E Porter (1965) Statistical Theories of Spectra: Fluctuations (New York: Academic)Google Scholar
  7. [7]
    T A Brody, J Flores, J B French, P A Mello, A Pandey and S S M Wong Rev. Mod. Phys. 53 385 (1981)ADSCrossRefGoogle Scholar
  8. [8]
    T Guhr, A Müller-Groeling and H A Weidenmüller Phys. Rep. 299 189 (1998)ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y Alhassid, Rev. Mod. Phys. 72 895 (2000)ADSCrossRefGoogle Scholar
  10. [10]
    M C Gutzwiller (1990) Chaos in Classical and Quantum Mechanics (New York: Springer)CrossRefzbMATHGoogle Scholar
  11. [11]
    Y Alhassid, A Novoselsky and N Whelan Phys. Rev. Lett. 65 2971 (1990)ADSCrossRefGoogle Scholar
  12. [12]
    Y Alhassid and N Whelan Phys. Rev. C 43 2637 (1991)ADSCrossRefGoogle Scholar
  13. [13]
    Y Alhassid and A Novoselsky Phys. Rev. C 45 1677 (1992)ADSCrossRefGoogle Scholar
  14. [14]
    Y Alhassid and D Vretenar Phys. Rev. C 46 1334 (1992)ADSCrossRefGoogle Scholar
  15. [15]
    V Zelevinsky, B A Brown, N Frazier and M Horoi Phys. Rep. 276 85 (1996)ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R R Whitehead et al. Phys. Lett. B 76 149 (1978)ADSCrossRefGoogle Scholar
  17. [17]
    J J M Verbaarschot and P J Brussaard Phys. Lett. B 87 155 (1979)ADSCrossRefGoogle Scholar
  18. [18]
    B A Brown and G Bertsch Phys. Lett. B 148 5 (1984)ADSCrossRefGoogle Scholar
  19. [19]
    H Dias et al. J. Phys. G 15, L79 (1989)CrossRefGoogle Scholar
  20. [20]
    V Zelevinsky, M Horoi and B A Brown Phys. Lett. B 350 141 (1995)ADSCrossRefGoogle Scholar
  21. [21]
    A Hamoudi, R G Nazmidinov, E Shahaliev and Y Alhassid Phys. Rev. C 65 064311 (2002)ADSCrossRefGoogle Scholar
  22. [22]
    P W M Glaudemans, P J Brussaard and R H Wildenthal Nucl. Phys. A 102 593 (1976).ADSCrossRefGoogle Scholar
  23. [23]
    A Hamoudi Nucl. Phys. A 849 27 (2011)ADSCrossRefGoogle Scholar
  24. [24]
    A Hamoudi and A A M Al-Rahmani Nucl. Phys. A 892 21 (2012)ADSCrossRefGoogle Scholar
  25. [25]
    W A Richter, M G Van der Merwe, R E Julies and B A Brown Nucl. Phys. A 523 325 (1991)ADSCrossRefGoogle Scholar
  26. [26]
    A K Hamoudi and T A Abdul Hussein Am. J. Phys. Appl. 5, 35 (2017)Google Scholar
  27. [27]
    B H Wildenthal Prog. Part. Nucl. Phys. 11 5 (1984)ADSCrossRefGoogle Scholar
  28. [28]
    A K Hamoudi and T A Abdul Hussein Int. J. Sci. Res. 6 1739 (2017)Google Scholar
  29. [29]
    H G Kruse and B H Wildenthal Bull. Am. Phys. Soc. 27 533 (1982)Google Scholar
  30. [30]
    F S Stephens et al. Phys. Rev. Lett. 94 042501 (2005)ADSCrossRefGoogle Scholar
  31. [31]
    A B Brown et al. MSU-NSCL Report Number 1289 Google Scholar
  32. [32]
    P R Bevington (1969) Data Reduction and Error Analysis for the Physical Science (USA: McGraw-Hill Book Company)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq
  2. 2.Physiology Department, Medicine CollegeAl-Muthanna UniversitySamawahIraq

Personalised recommendations