Advertisement

The dark energy interacting with the extended Chaplygin gas in F (R,T) gravity formalism

  • Abdelhakim BensaidEmail author
  • Rachid Bouamrane
Original Paper
  • 10 Downloads

Abstract

In this paper, we study the interaction between the extended Chaplygin gas and the dark energy in F(R, T) gravity formalism, where T is the trace of the energy–momentum tensor, and R is the Ricci scalar. Assuming that the total energy density and the total pressure of the universe as a combination of the dark energy and the extended Chaplygin gas, this study was carried out after writing down the modified Friedmann equations for the flat case, and also, we investigated the behaviour of the dark energy density, the pressure and the equation of state parameter for two interaction models, within the simple scenario of the universe. We discuss the effect of the bulk viscosity for each interacting model; we found that both interaction models lead to quintessence phase of the dark energy.

Keywords

Chaplygin gas Viscosity F(R, T) gravity 

PACS Nos.

04.20.−q 04.50.Kd 98.80.−k 

Notes

Acknowledgements

We would like to thank Prof. Dr Marina Aura DARIESCU and Prof. Dr Ciprian DARIESCU for the help that they gave us for two months of internship at their theoretical physics research group, faculty of physics, Universitatea Alexandru Ioan Cuza Iaşi, România, and for comments that greatly improved the manuscript.

References

  1. [1]
    S Perlmutter Bull. Am. Astron. Soc. 29 1351 (1997)ADSGoogle Scholar
  2. [2]
    A G Riess Astron. J. 116 1009 (1998)ADSCrossRefGoogle Scholar
  3. [3]
    P T Silva and O Bertolami Astrophys. J. 599 829 (2003)ADSCrossRefGoogle Scholar
  4. [4]
    Planck Collaboration: P A R Ade Preprint arXiv:1303.5062 (2015)
  5. [5]
    M C Bento, O Bertolami and A A Sen Phys. Lett. B575 172 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    S Weinberg Rev. Mod. Phys. 61 1 (1989)ADSCrossRefGoogle Scholar
  7. [7]
    P J E Peebles and B Ratra Rev. Mod. Phys. 75 559 (2003)ADSCrossRefGoogle Scholar
  8. [8]
    M Jamil, D Momeni, K Bamba and R Myrzakulov Int. J. Mod. Phys. D 21 1250063 (2012)Google Scholar
  9. [9]
    M Jamil and A Sheykhi Int. J. Theor. Phys. 50 625 (2011)CrossRefGoogle Scholar
  10. [10]
    M R Setare, J Sadeghi and A R Amani Phys. Lett. B 673 241 (2009)ADSCrossRefGoogle Scholar
  11. [11]
    N Afshordi, D J H Chung and G Geshnizjani Phys. Rev. D 75 083513 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A Pasqua, A K Mohammadi, M Jamil and R Myrzakulov Astrophys. Space Sci. 340 199 (2012)ADSCrossRefGoogle Scholar
  13. [13]
    T Padmanabhan Phys. Rep. 380 235 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S I Nojiri and S D Odintsov Phys. Rev. D 74 086005 (2006)ADSCrossRefGoogle Scholar
  15. [15]
    S I Nojiri and S D Odintsov Phys. Rev. D 77 026007 (2007)ADSCrossRefGoogle Scholar
  16. [16]
    S I Nojiri and D S Odintsov Phys. Lett. B 631 1 (2005)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G Kofinas and E N Saridakis Preprint arXiv:1404.2249 (2014)
  18. [18]
    T Harko, F S Lobo, G Otalora and E Nsaridakis Preprint arXiv:1404.6212 (2010)
  19. [19]
    E V Linder Phys. Rev. D 81 127301 (2010)ADSCrossRefGoogle Scholar
  20. [20]
    T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)ADSCrossRefGoogle Scholar
  21. [21]
    P H R S Moraes and R A C Correa Astrophys. Space Sci. 361 91 (2016)ADSCrossRefGoogle Scholar
  22. [22]
    M Sharif and M Zubair J. Phys. Soc. Jpn. 81 114005 (2012)ADSCrossRefGoogle Scholar
  23. [23]
    M Sharif and M Zubair J. Phys. Soc. Jpn. 82 014002 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    A F Santos Preprint arXiv:1308.3503 (2013)
  25. [25]
    C J Ferst and A F Santos Preprint arXiv:1411.1002 (2014)
  26. [26]
    A Kamenshchik, U Moschella and V Pasquier Phys. Lett. B 511 265 (2003)ADSCrossRefGoogle Scholar
  27. [27]
    A R Amani and B Pourhassan Int. J. Geom. Methods Modern Phys. 11 1450065 (2004)CrossRefGoogle Scholar
  28. [28]
    B Pourhassan and E O Kahya Adv. High Energy Phys. 2014 231452 (2014)CrossRefGoogle Scholar
  29. [29]
    A Kamenshchik, U Moschella and V Pasquier Phys. Lett. B 487 7 (2000)ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M C Bento, O Bertolami and A A Sen Phys. Rev . D 70 0433507 (2004)Google Scholar
  31. [31]
    H B Benaoum Preprint arXiv:hep-th/0205140 (2002)
  32. [32]
    M R Setare and A Sheykhi Int. J. Mod. Phys. D 19 171 (2010)ADSCrossRefGoogle Scholar
  33. [33]
    T Padmanabhan, S M Chitre Phys. Lett. A 120 433 (1987)ADSCrossRefGoogle Scholar
  34. [34]
    H Saadat and B Pourhassan Space Sci. 343 783 (2012)ADSCrossRefGoogle Scholar
  35. [35]
    X Zhai, Y Xu and X Li Int. J. Mod. Phys. D 15 1151 (2006)ADSCrossRefGoogle Scholar
  36. [36]
    H Saadat and B Pourhassan Astrophys. Space Sci. 343 783 (2013)ADSCrossRefGoogle Scholar
  37. [37]
    H Saadat and B Pourhassan Astrophys. Space Sci. 344 237 (2013)ADSCrossRefGoogle Scholar
  38. [38]
    A R Amani and B Pourhassan Int. J. Theor. Phys. 52 1309 (2013)CrossRefGoogle Scholar
  39. [39]
    B Pourhassan Int. J. Modern Phys. D 22 1350061 (2013)ADSCrossRefGoogle Scholar
  40. [40]
    H Saadat and B Pourhassan Int. J. Theor. Phys. 52 3712 (2013)CrossRefGoogle Scholar
  41. [41]
    B Li and J D Barrow Phys. Rev. D79 103521 (2009)ADSCrossRefGoogle Scholar
  42. [42]
    H Velten and D J Schwarz JCAP 1109 16 (2011)ADSCrossRefGoogle Scholar
  43. [43]
    R Maartens, Class Quantum Grav. 12 1455 (1995)ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M Kiran and D R K Reddy Astrophys. Space Sci. 346 521 (2013)ADSCrossRefGoogle Scholar
  45. [45]
    L D Landau and E M Lifshitz The Classical Theory of Fields (Oxford: Butterworth-Heinemann) (1998)zbMATHGoogle Scholar
  46. [46]
    P H R S Moraes and R A C Correa Preprint arXiv:1606.07045 (2016)
  47. [47]
    C P Singh and V Singh Gen. Rel. Grav. 46 1696 (2014)ADSCrossRefGoogle Scholar
  48. [48]
    M Khurshudyan Preprint arXiv:1301.1021 (2013)
  49. [49]
    J Naji, B Pourhassan and A R Amani Int. J. Mod. Phys. D 23 1450020 (2014)ADSCrossRefGoogle Scholar
  50. [50]
    M Khurshudyan, B Pourhassan and E O Kahya Int. J. Geom. Methods Modern Phys. 11 1450061 (2014)CrossRefGoogle Scholar
  51. [51]
    M Khurshudyan, E Chubaryan and B Pourhassan Int J Theor Phys. 53 2370 (2014)CrossRefGoogle Scholar
  52. [52]
    A R Amani and B Pourhassan Int. J. Geom. Methods Modern Phys. 11 1450065 (2014)CrossRefGoogle Scholar
  53. [53]
    D Bazeia, A S Lobao Jr. and R Menezes Phys. Lett. B 743 98 (2015)ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    E H Baffou, M J S Houndjo and I G Salako Int. J. Geom. Methods Mod. Phy. 14 1750051 (2017)CrossRefGoogle Scholar
  55. [55]
    R Amani and S L Dehneshin Can. J. Phys. 93 1453 (2015)Google Scholar
  56. [56]
    C Feng, B Wang, E Abdalla and R Su Phys. Lett. B 665 111 (2008)ADSCrossRefGoogle Scholar
  57. [57]
    B Pourhassan and E O Kahya Results Phys. 4 101 (2014)ADSCrossRefGoogle Scholar
  58. [58]
    R G Cai and Q Su Phys. Rev. D 81 103514 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.LEPM, Faculté de PhysiqueUSTO-MBBir El Djir, OranAlgeria

Personalised recommendations