A novel model of all-optical reversible XOR/XNOR logic gate on a single photonic circuit
- 15 Downloads
Abstract
The high speed and high volume of optical data are subjected to electronic conversions at the receiving end of the optical network for processing purposes. This optoelectronic conversion makes the system inefficient in terms of speed and bandwidth. When high-speed data are subjected to electronic processing, heat dissipates from electronic circuits. Another source of heat dissipation is the loss of information from the irreversible processors. The solution of this problem is reversible computing. This research paper proposes a novel 3 × 3 reversible XOR logic gate and XNOR logic gate in a single photonic circuit. The proposed photonic circuit works on the principles of cross-gain modulation and cross-phase modulation, which is introduced by the active regions of two semiconductor optical amplifier in a Mach–Zehnder interferometer structure. The proposed design works at 10 Gbps data rate. The average extinction ratio of the design is 18.58 dB, and the average quality factor is 63.03 dB. The optical cost of the proposed circuit is 1 unit.
Keywords
Cross-phase modulation (XPM) Cross-gain modulation (XGM) Semiconductor optical amplifier (SOA) Reversible logic Mach–Zehnder interferometer (MZI) Extinction ratio (ER)PACS Nos.
42.30-d 42.50Ex 42.50-p 42.65-k 42.65-Re 42.79-Hp 42.79-Sz 42.81-i 42.82-mNotes
References
- [1]M Notomi, A Shainya, K Nozaki, T Tanabe, S Matsuo, E Kuramoch et al. IET Cric. Device Syst. 5 84 (2011)CrossRefGoogle Scholar
- [2]A Shancham, K Bergman and L Carloni IEEE Trans. Comput. 57 1246 (2008)MathSciNetCrossRefGoogle Scholar
- [3]R Landauer IBM J. Res. Dev. 5 183 (1961)CrossRefGoogle Scholar
- [4]C H Bennett IBM J. Res. Dev. 17 525 (1973)CrossRefGoogle Scholar
- [5]A J Paustie and K J Blow Opt. Commun. 174 317 (2000)ADSCrossRefGoogle Scholar
- [6]R Forsati, S V Ebrahimi, K Navi, E Mojoherani and H Jashnsaz Opt. Laser Technol. 45 565 (2013)ADSCrossRefGoogle Scholar
- [7]V Arun, N K Shukla, A K Singh and P Singh Opt. Quant. Electron. 48 1 (2016)CrossRefGoogle Scholar
- [8]D Mandal, S Mandal and S K Garai Opt. Laser Technol. 72 33 (2015)ADSCrossRefGoogle Scholar
- [9]S K Garai IET Optoelectron. 5 247 (2011)CrossRefGoogle Scholar
- [10]S K Garai Opt. Commun. 313 441 (2014)ADSCrossRefGoogle Scholar
- [11]C Taraphdar, T Chattopadhyay and J N Roy Opt. Laser Technol. 42 249 (2010)ADSCrossRefGoogle Scholar
- [12]I Kaminow and T Li Academic Press, China (2002)Google Scholar
- [13]P Singh, D K Tripathi, S Jaiswal and H K Dixit Opt. Quant. Electron. 46 1435 (2014)CrossRefGoogle Scholar
- [14]K K Qureshi, Z Liu, H Y Tam and M F Zia Opt. Commun. 309 68 (2013)ADSCrossRefGoogle Scholar
- [15]S Kumar, S K Raghuwanshi and A Kumar Opt. Eng. 52 97 (2013)Google Scholar
- [16]A Kumar, S Kumar and A K Raghuwanshi Optik 125 5764 (2014)ADSCrossRefGoogle Scholar
- [17]C Reis, T Chattopadhyay, P Andre and A Teixeira Appl. Opt. 51 8693 (2012)ADSCrossRefGoogle Scholar
- [18]G S B Filho, D G Correia, W B de Fraga and G F Guimaraes Opt. Laser Technol. 97 370 (2017)ADSCrossRefGoogle Scholar
- [19]A C Ferreira, A G Coelho, J R R Sousa et al. Opt. Laser Technol. 77 116 (2016)ADSCrossRefGoogle Scholar
- [20]R Radha, P S Vinayagam and K Porsezian Commun. Nonlinear Sci. Numer. Simul. 37 354 (2016)ADSMathSciNetCrossRefGoogle Scholar
- [21]A K Cherri and A S Al-Zayed Optik 121 1577 (2009)ADSCrossRefGoogle Scholar
- [22]A S Al-Zayed and A K Cherri Opt. Laser Technol. 42 810 (2010)ADSCrossRefGoogle Scholar
- [23]E A Patent, J J G M van der Tol, M L Nielsen, J J M Binsma, Y S Oei, J Mork and M K Smit Electron. Lett. 41 549 (2005)CrossRefGoogle Scholar
- [24]T Chattopadhyay Opt. Fiber Technol. 17 558 (2011)ADSCrossRefGoogle Scholar
- [25]Lokesh and A Marwaha Opt. Laser Technol. 70 112 (2015)ADSCrossRefGoogle Scholar
- [26]A Koteb and K E Zoiros Opt. Commun. 402 511 (2017)ADSCrossRefGoogle Scholar
- [27]H Han, M Zhang, P Ye and F Zhang Opt. Commun. 281 5140 (2008)ADSCrossRefGoogle Scholar
- [28]V Arun, N K Shukla, A K Singh and P Singh Opt. Quant. Electron. 48 36 (2016)CrossRefGoogle Scholar