Advertisement

Dielectric study of Ti-doped Bi2VO5.5 solid electrolyte

  • Diptimayee Tripathy
  • Amarjyoti Saikia
  • Gyati Tachang Tado
  • Arvind Pandey
Original Paper
  • 9 Downloads

Abstract

Synthesis and characterization of Bi2V1−xTixO5.5−(x/2)−δ (0 ≤ x ≤ 0.150) was done. For the present system, the lower limit of Ti required for near-complete tetragonal phase stabilization has been found to be x = 0.125. The optimum values of ionic conductivity were obtained for the compositions; Bi2V0.875Ti0.125O5.4375 and Bi2V0.9Ti0.1O5.45 at 300 °C and 600 °C, respectively. Interestingly, two peaks have been observed in frequency versus dielectric loss spectra for parent compound, which is in \(\alpha\)-orthorhombic phase, as well as for tetragonal phase stabilized specimens with compositions x ≥ 0.125 at temperatures below 300 °C. No such peaks have been found in \(\beta\)-orthorhombic (x = 0.085) as well as in mixed tetragonal and orthorhombic (x = 0.1 and 0.1125) phases. Thus, we propose that frequency-dependent dielectric loss spectra can be used to qualitatively distinguish \(\alpha\) and \(\gamma\)-phases from \(\beta\)-phase in BITIVOX system and it is the central result of this work.

Keywords

BITIVOX XRD Phase transition Ionic conduction Dielectric relaxation 

PACS No.

77.22 Gm 

Notes

Acknowledgements

The authors are grateful to DST, New Delhi, for providing the FIST facility (Sanction Order Number SB/52/CMP-093/2013) in the Physics department for XRD and impedance studies. One of the authors (AJS) gratefully acknowledges DST, New Delhi, for INSPIRE fellowship.

References

  1. [1]
    B Singh, S Ghosh, S Aich and B Roy J. Power Sources 339 103 (2017).ADSCrossRefGoogle Scholar
  2. [2]
    D S Khaerudini, G Guan, P Zhang, X Hao and A Abudula Rev. Chem. Eng. 30 539 (2014).CrossRefGoogle Scholar
  3. [3]
    S Lazure, Ch Vernochet, R N Vannier, G Nowogrocki and G Mairesse Solid State Ionics 90 117 (1996).CrossRefGoogle Scholar
  4. [4]
    F Krok, I Abrahams, M Malys, W Bogusz, J R Dygas, J A G Nelstrop and A J Bush Solid State Ionics 136–137 119 (2000).CrossRefGoogle Scholar
  5. [5]
    J Chmielowiec, G Pa´Sciak and P Bujło J. Alloys Compd. 451 676 (2008).CrossRefGoogle Scholar
  6. [6]
    F Krok, I Abrahams, D J Bangobango, W Bogusz and J A G Nelstrop Solid State Ionics 86–88 261 (1996).CrossRefGoogle Scholar
  7. [7]
    L F Brum Malta and M E Medeiro J. Therm. Anal. Calorim. 87 883 (2007).CrossRefGoogle Scholar
  8. [8]
    S Beg, S Hafeez and N A S Al-Areqi Philos. Mag. 90 4579 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    S Beg and N A S Al-Areqi Mater. Chem. Phys. 118 15 (2009).CrossRefGoogle Scholar
  10. [10]
    E P Kharitonova and V I Voronkova Inorg. Mater. 43 55 (2007).CrossRefGoogle Scholar
  11. [11]
    S Beg, S Hafeez and N A S Al-Areqi Defect Diffus. Forum 316–317 7 (2011).Google Scholar
  12. [12]
    M H Paydar, A M Hadian and G Fafilek J. Mater. Sci. 39 1357 (2004).ADSCrossRefGoogle Scholar
  13. [13]
    J Yan and M Greenblatt Solid State Ionics 81 225 (1995).CrossRefGoogle Scholar
  14. [14]
    V Sharma, A K Shukla and J Gopalakrishnan Solid State Ion. 58 359 (1992).CrossRefGoogle Scholar
  15. [15]
    S Beg and S Haneef Phase Transit. 87 821 (2014).CrossRefGoogle Scholar
  16. [16]
    H Putz, Gbr Brandenburg and Kreuzherrenstr. Match! – Phase Identification from Powder Diffraction—Version 3, Crystal Impact, 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match.
  17. [17]
    K Sooryanarayana, T N Guru Row and K B R Varma Mater. Res. Bull. 34 425 (1999).CrossRefGoogle Scholar
  18. [18]
    C Muller, M Anne and M Bacmann Solid State Ionics 111 27 (1998).CrossRefGoogle Scholar
  19. [19]
    L Zhang, F Liu, K Brinkman, K L Reifsnider and Virkar J. Power Sources 247 947 (2014).ADSCrossRefGoogle Scholar
  20. [20]
    D Tripathy and A Pandey J. Alloys Compd. 737 136 (2018).CrossRefGoogle Scholar
  21. [21]
    A S Bondarenko and G A Ragoish In Progress in Chemometrics Research, Pomerantsev A. L., Ed.; Nova Science Publishers: New York, 2005, pp. 89–102 http://www.abc.chemistry.bsu.by/vi/analyser/.
  22. [22]
    R Kant, K Singh and O P Pandey Ionics 16 277 (2010).CrossRefGoogle Scholar
  23. [23]
    S Bag and B Behera J. Sci. Adv. Mate. Devices 1 512 (2016).Google Scholar
  24. [24]
    R Kant, K Singh and O P Pandey Ceram. Int. 35 221 (2009).CrossRefGoogle Scholar
  25. [25]
    E S Buyanova, M V Morozova, Ju V Emelyanova, S A Petrova, R G Zakharov, N V Tarakina and V M Zhukovskiy Solid State Ion. 243 8 (2013).CrossRefGoogle Scholar
  26. [26]
    W J Bowman, J Zhu, R Sharma and P A Crozier Solid State Ionics 272 9 (2015).CrossRefGoogle Scholar
  27. [27]
    S Beg, N A S Al-Areqi, S Hafeez and A Al–Alas Ionics 21 421 (2015).CrossRefGoogle Scholar
  28. [28]
    A KezˇIonis, W Bogusz, F Krok, J Dygas, A Orliukas, I Abrahams and W Gebicki Solid State Ionics 119 145 (1999).CrossRefGoogle Scholar
  29. [29]
    I Abrahams, F Krok, M Malys and W Wrobel Solid State Ionics 176 2053 (2005).CrossRefGoogle Scholar
  30. [30]
    F Abraham, M F Debreuille-Gresse, G Mairesse and G Nowogrocki Solid State Ionics 28–30 529 (1988).CrossRefGoogle Scholar
  31. [31]
    A Dutta and T P Sinha J. Phys. Chem. Solids 67 1484 (2006).ADSCrossRefGoogle Scholar
  32. [32]
    S Bag and B Behera Int. J. Emerg. Technol. Adv. Eng. 5 (2015).Google Scholar
  33. [33]
    M Roy, S Sahu, A M Awasthi and S Bharadwaj J. Therm. Anal. Calorim. 115 1265 (2014).Google Scholar
  34. [34]
    T V Kumar, A S Chary, S Bhardwaj, A M Awasthi and S N Reddy Int. J. Mater. Sci. Appl. 2 173 (2013).Google Scholar
  35. [35]
    K Shantha and K B R Varma Solid State Ionics 99 225 (1997).CrossRefGoogle Scholar
  36. [36]
    T Badapanda, R K Harichandan, S S Nayak, A Mishra and S Anwar Process. Appl. Ceram. 8 145 (2014).Google Scholar
  37. [37]
    N Pandey, A K Thakur and R N P Choudhary Indian J. Eng. Mater. Sci. 15 191 (2008).Google Scholar
  38. [38]
    N Shukla, A K Thakur, A Shukla and D T Marx Int. J. Electrochem. Sci. 7 7644 (2014).Google Scholar
  39. [39]
    G Mairesse, P Roussel, R N Vannier, M Anneb and G Nowogrocki Solid State Sci. 5 861 (2003).CrossRefGoogle Scholar
  40. [40]
    D L Sidebottom, P F Green and R K Brow J. Non-Cryst. Solids 183 151 (1995).ADSCrossRefGoogle Scholar
  41. [41]
    L Borah, B Paik, S A Hashmi and A Pandey Ionics 18 747 (2012).Google Scholar
  42. [42]
    R B Belgacem, M Chaari, A F Brana, B J Garcia and A Matoussi J. Am. Ceram. Soc. 100 2045 (2017).CrossRefGoogle Scholar
  43. [43]
    Y B Taher, N Moutia, A Oueslati and M Gargouri RSC Adv. 6 39750 (2016).CrossRefGoogle Scholar
  44. [44]
    N K Mohanty, R N Pradhan, S K Satpathy, A K Behera, B Behera and P Nayak J. Mater. Sci. Mater. Electron. 25 117 (2014).Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsNorth Eastern Regional Institute of Science and TechnologyNirjuliIndia

Personalised recommendations