Advertisement

The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors

  • S. Demirezen
  • E. E. Tanrıkulu
  • Ş. Altındal
Original Paper
  • 22 Downloads

Abstract

In this research, PVA (doped with 7% Zn) was sandwiched between Al and p-Si as a polymer interfacial layer. Voltage and frequency effect on the real and imaginary components of complex dielectric constant (ε′ and ε″), electric modulus (M′ and M″), loss tangent (tan δ) and electrical conductivity (σ) of the MPS-type capacitor has been studied. Impedance spectroscopy method was used between 5 and 5000 kHz at room temperature. Almost all frequency-related parameters were found as quite susceptible, especially in the accumulation and depletion regions. These changes in real and imaginary components of dielectric properties in depletion region were attributed to the interface layer and dipole polarization, the existence of surface states (Nss) and their relaxation time (τ), especially at low frequencies. But these changes in the accumulation region were attributed to the existence of interfacial layer and series resistance (Rs) of the capacitor owing to the voltage divided between them and capacitor. As a result, frequency, applied biases, interfacial polymer layer, polarization processes, Nss and Rs of the capacitor are more effective on the values of ε′, ε″, tan δ, M′, M″ and σ. Therefore, the effects of them must be considered in determining the dielectric parameters, electric modulus, conductivity and conduction mechanisms in the capacitors with and without an interfacial layer such as insulator/oxide, polymer, ferroelectric materials.

Keywords

Impedance spectroscopy method Negative dielectric properties Electric modulus Electrical conductivity 

PACS No.

73.20.−r 73.20.At 73.40.−c 73.30.+y 

Notes

Acknowledgements

This study was supported by Gazi University Scientific Research Project with GU-BAP.05/2018-10 Project Number and Amasya University Scientific Research Project with FMB-BAP 17-0292 Project Number.

References

  1. [1]
    E H Nicollian and J R Brews MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley) (1982).Google Scholar
  2. [2]
    A Chelkowski Dielectric Physics (Amsterdam : Elsevier) (1980).Google Scholar
  3. [3]
    S M Sze Physics of Semiconductor Devices 2nd ed. (New York: Wiley) (1981).Google Scholar
  4. [4]
    S Fromille and J Phillips Materials (Basel) 7 8197 (2014).ADSCrossRefGoogle Scholar
  5. [5]
    M Jayalakshmi and K Balasubramanian Int. J. Electrochem. Sci. 3 1196 (2008).Google Scholar
  6. [6]
    M D Stoller, S Park, Y Zhu, J An and R S Ruoff Nano Lett. 8 3498 (2008).ADSCrossRefGoogle Scholar
  7. [7]
    İ. Taşçıoğlu, Ö. Tüzün Özmen, H. M. Şağban, E. Yağlıoğlu, Ş. Altındal, J. Electron. Mater.  https://doi.org/10.1007/s11664-017-5294-2.CrossRefGoogle Scholar
  8. [8]
    I Bunget and M Popescu Physics of solid dielectrics (New York, N.Y : Elsevier) (1984).Google Scholar
  9. [9]
    J Ho, T R Jow, and S Boggs IEEE Electr. Insul. Mag. 26 20 (2010).CrossRefGoogle Scholar
  10. [10]
    [10] Ş Çavdar, H Koralay, and Ş Altındal J. Low Temp. Phys. 164 102 (2011).Google Scholar
  11. [11]
    Ç Ş Güçlü, A F Özdemir and Ş Altindal Appl. Phys. A 122 1032 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    E H Rhoderick and R H Williams Metal-Semiconductor Contacts 2nd ed. (New York: Clarendon Press) (1988).Google Scholar
  13. [13]
    M Rahim, N A Khan, and M Mumtaz J. Low Temp. Phys. 172 47 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    M Mumtaz and N A Khan Phys. C Supercond. 469 728 (2009).ADSCrossRefGoogle Scholar
  15. [15]
    G-Z Liu, C Wang, C-C Wang, J Qiu, M He, J Xing, K-J Jin, H-B Lu, and G-Z Yang Appl. Phys. Lett. 92 122903 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    T Tunç, İ Dökme, Ş Altındal, and İ Uslu J. Appl. Polym. Sci. 122 265 (2011).CrossRefGoogle Scholar
  17. [17]
    S A Yerişkin, M Balbaşı, and İ Orak J. Mater. Sci. Mater. Electron. 28 7819 (2017).CrossRefGoogle Scholar
  18. [18]
    H G Çetinkaya, A Kaya, Ş Altındal, and S Koçyiğit Can. J. Phys. 93 1213 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    E E Tanrıkulu, S Demirezen, Ş Altındal, and İ Uslu J. Mater. Sci. Mater. Electron. 28 8844 (2017).CrossRefGoogle Scholar
  20. [20]
    H G Çetinkaya, S Alialy, Ş Altındal, A Kaya, and İ Uslu J. Mater. Sci. Mater. Electron. 26 3186 (2015).CrossRefGoogle Scholar
  21. [21]
    S Demirezen, A Kaya, S A Yerişkin, M Balbaşı, and İ Uslu Results Phys. 6 180 (2016).ADSCrossRefGoogle Scholar
  22. [22]
    S A Yeriskin, H I Unal, and B Sari J. Appl. Polym. Sci. 120 390 (2011).CrossRefGoogle Scholar
  23. [23]
    M Ershov, H C Liu, L Li, M Buchanan, Z R Wasilewski, and A K Jonscher IEEE Trans. Electron Devices 45 2196 (1998).ADSCrossRefGoogle Scholar
  24. [24]
    X Wu, E S Yang, and H L Evans J. Appl. Phys. 68 2845 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    C H Champness and W R Clark Appl. Phys. Lett. 56 1104 (1990).ADSCrossRefGoogle Scholar
  26. [26]
    E Arslan, Y Şafak, Ş Altındal, Ö Kelekçi, and E Özbay J. Non Cryst. Solids 356 1006 (2010).ADSCrossRefGoogle Scholar
  27. [27]
    I S Yahia, G B Sakr, S S Shenouda, M Fadel, S S Fouad, and F Yakuphanoglu Appl. Phys. A 112 275 (2013).ADSCrossRefGoogle Scholar
  28. [28]
    I Yücedağ, A Kaya, Ş Altındal, and I Uslu Chinese Phys. B 23 47304 (2014).CrossRefGoogle Scholar
  29. [29]
    Y Şafak-Asar, T Asar, Ş Altındal, and S Özçelik J. Alloys Compd. 628 442 (2015).CrossRefGoogle Scholar
  30. [30]
    S Demirezen Appl. Phys. A 112 827 (2013).ADSCrossRefGoogle Scholar
  31. [31]
    I M Afandiyeva, S Demirezen, and Ş Altındal J. Alloys Compd. 552 423 (2013).CrossRefGoogle Scholar
  32. [32]
    O Pakma, N Serin, T Serin, and Ş Altındal J. Phys. D. Appl. Phys. 41 215103 (2008).ADSCrossRefGoogle Scholar
  33. [33]
    I M Afandiyeva, M M Bülbül, Ş Altındal, and S Bengi Microelectron. Eng. 93 50 (2012).CrossRefGoogle Scholar
  34. [34]
    A A Sattar and S A Rahman Phys. Status Solidi 200 415 (2003).ADSCrossRefGoogle Scholar
  35. [35]
    B Barış Phys. E Low-Dimensional Syst. Nanostructures 54 171 (2013).ADSCrossRefGoogle Scholar
  36. [36]
    P Dutta, S Biswas, and S K De Mater. Res. Bull. 37 193 (2002).CrossRefGoogle Scholar
  37. [37]
    C V Subba Reddy, X Han, Q-Y Zhu, L-Q Mai, and W Chen Microelectron. Eng. 83 281 (2006).CrossRefGoogle Scholar
  38. [38]
    H N Chandrakala, B Ramaraj, Shivakumaraiah, G M Madhu, and Siddaramaiah J. Mater. Sci. 47 8076 (2012).ADSCrossRefGoogle Scholar
  39. [39]
    C Y Zhu, L F Feng, C D Wang, H X Cong, G Y Zhang, Z J Yang, and Z Z Chen Solid. State. Electron. 53 324 (2009).ADSCrossRefGoogle Scholar
  40. [40]
    J Werner, A F J Levi, R T Tung, M Anzlowar, and M Pinto Phys. Rev. Lett. 60 53 (1988).ADSCrossRefGoogle Scholar
  41. [41]
    A G U Perera, W Z Shen, M Ershov, H C Liu, M Buchanan, and W J Schaff Appl. Phys. Lett. 74 3167 (1999).ADSCrossRefGoogle Scholar
  42. [42]
    L F Feng, D Li, C Y Zhu, C D Wang, H X Cong, X S Xie, and C Z Lu J. Appl. Phys. 102 63102 (2007).CrossRefGoogle Scholar
  43. [43]
    E Ehrenfreund, C Lungenschmied, G Dennler, H Neugebauer, and N S Sariciftci Appl. Phys. Lett. 91 12112 (2007).CrossRefGoogle Scholar
  44. [44]
    C Lungenscmied, E Ehrenfreund and N Sarıçiftçi Org. Electron. 10 115 (2009).CrossRefGoogle Scholar
  45. [45]
    Ç Bilkan, A Gümüş, and Ş Altındal Mater. Sci. Semicond. Process. 39 484 (2015).CrossRefGoogle Scholar
  46. [46]
    E. E. Tanrıkulu, S. Demirezen, Ş. Altındal, İ. Uslu J. Mater. Sci. Mater. Electron. 29 2890 (2018).CrossRefGoogle Scholar
  47. [47]
    K S A Butcher, T L Tansley, D Alexiev Solid-State Electron. 39 333 (1996).ADSCrossRefGoogle Scholar
  48. [48]
    B K Jones, J Santana, M McPherson, Solid State. Commun. 107 47 (1988).ADSCrossRefGoogle Scholar
  49. [49]
    Q Niu, N I Crăciun, G-J. A H Wetzelaer, P W M Blom Phys. Rev. Lett. 120 116602 (2018).ADSCrossRefGoogle Scholar
  50. [50]
    S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y.Badali, Ş. Altındald, M.A. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Mater. Sci. Semicond. Process. 86 173 (2018).CrossRefGoogle Scholar
  51. [51]
    N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-9391-7.CrossRefGoogle Scholar
  52. [52]
    D. E. Yıldız, M. Yıldırım, M. Gökçen, J. Vac. Sci. Technol. A 32 031509 (2014).CrossRefGoogle Scholar
  53. [53]
    Martens H C F, Pasveer W F, Blom H B, Huiberts J N and Blom P W M Phys. Rev. B. 63 125328 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • S. Demirezen
    • 1
  • E. E. Tanrıkulu
    • 2
  • Ş. Altındal
    • 2
  1. 1.Department of Computer Aided Design and Animation, Vocational School of DesignAmasya UniversityAmasyaTurkey
  2. 2.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey

Personalised recommendations