Schrödinger and Dirac dynamics on time-dependent quantum graph

  • D S Nikiforov
  • I V Blinova
  • I Y Popov
Original Paper


Quantum graphs with varying edges lengths are constructed. We deal with two types of operators on the graph edges: the Schrödinger and the Dirac operators. The dynamics of quantum particles for these two cases is compared. From the physical point of view, the Schrödinger dynamics corresponds to nonrelativistic particle and the Dirac dynamics to the relativistic one.


Quantum graph Spectrum Time evolution 


02.30.Jr 03.65.Ge 



This work was partially financially supported by the Government of the Russian Federation (Grant 08-08), by Grant 16-11-10330 of Russian Science Foundation.


  1. [1]
    S Gnutzmann and U Smilansky Adv.Phys. 55 527 (2006)ADSCrossRefGoogle Scholar
  2. [2]
    P Kuchment and L Kunyansky Adv. Comput. Math. 16 263 (2002)MathSciNetCrossRefGoogle Scholar
  3. [3]
    P Exner, P Keating, P Kuchment, T Sumada and A Teplyaev Analysis on graph and its applications (Providence: AMS) Sec. 4 (2008)Google Scholar
  4. [4]
    P Exner, J. Phys. A: Math. Gen., 21 4009 (1988).ADSCrossRefGoogle Scholar
  5. [5]
    P Exner and P Seba Rep. Math. Phys. 28 7 (1989).ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N I Gerasimenko and B S Pavlov Theoret. Math. Phys. 74 230 (1988)MathSciNetCrossRefGoogle Scholar
  7. [7]
    I Y Popov, J. Math. Phys. 55 033504 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    I Y Popov and P I Smirnov Phys. Lett. A 377 439 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P.Kuchment, G. Berkolaiko, Introduction to Quantum Graphs, (Providence: AMS) (2013).Google Scholar
  10. [10]
    J V Jose and R Gordery Phys. Rev. Lett. 56 290 (1986)ADSCrossRefGoogle Scholar
  11. [11]
    A J Makowski and S T Dembinski Phys. Lett. 154 217 (1991)MathSciNetCrossRefGoogle Scholar
  12. [12]
    A Munier, J R Burgan, M Feix and E Fijalkow J. Math. Phys. 22 1219 (1981)Google Scholar
  13. [13]
    P Pereshogin and P Pronin Phys. Lett., 156 12 (1991)CrossRefGoogle Scholar
  14. [14]
    M Correggi, G Dell’Antonio, R Figari, A Mantile Commun. Math. Phys. 257 169 (2005)Google Scholar
  15. [15]
    T Hmidi, A Mantile and F. Nier Math. Phys. Anal. Geom. 13 83 (2009)Google Scholar
  16. [16]
    C Cacciapuoti, A Mantile and A Posilicano Nanosystems: Phys. Chem. Math. 7 303 (2016)Google Scholar
  17. [17]
    G F Dell’Antonio, R Figari and A Teta J. Funct. Anal. 142 249 (1996)Google Scholar
  18. [18]
    B M Levitan, I S Sargsyan Sturm-Liouville and Dirac Operators (Berlin: Springer) (1991)Google Scholar
  19. [19]
    V Alonso, S De Vincenzo and L Mondino Eur. J. Phys. 18 315 (1997)Google Scholar
  20. [20]
    V Alonso, S De Vincenzo and L Mondino J. Phys. A 30 8573 (1997).Google Scholar
  21. [21]
    V Alonso and S De Vincenzo J. Phys. A 32 5277 (1999).Google Scholar
  22. [22]
    Z A Sobirov, D U Matrasulov, Sh Ataev and H Yusupov In Complex Phenomena in Nanoscale Systems. Eds. G. Casati, D. Matrasulov (Berlin: Springer) (2009)Google Scholar
  23. [23]
    F Bayazit, B Dorn and M Kramar Fijavz Networks and Heterogeneous Media 8 843 (2013)Google Scholar
  24. [24]
    W Arendt, D Dier and M Kramar Fijavz Appl. Math. Optim. 69 315 (2014)Google Scholar
  25. [25]
    D N Pinder Am. J. Phys. 58 54 (1990).ADSCrossRefGoogle Scholar
  26. [26]
    D U Matrasulov, J R Yusupov, K K Sabirov and Z A Sobirov Nanosystems: Phys. Chem. Math. 6 173 (2015)Google Scholar
  27. [27]
    D A Eremin, E N Grishanov, O G Kostrov, D S Nikiforov and I Y Popov Nanosyst.: Phys. Chem. Math. 8 420 (2017)Google Scholar
  28. [28]
    F Gesztesy, H Grosse and B Thaller hys. Rev. Lett. 50, 625 (1983)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations