Advertisement

Theoretical wavelengths, energy levels, lifetimes, and transition probabilities for the silicon isoelectronic sequence Cd XXXV-Ba XLIII, W LXI

  • Z B Chen
Original Paper
  • 28 Downloads

Abstract

We have performed the theoretical calculations of wavelengths and excitation energies from ground state for 56 fine-structure levels as well as of oscillator strengths and radiative decay rates for all the electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among these levels of the terms belonging to the \(3s^{2}3p^{2}\), \(3s^{2}3p3d\), \(3s3p^{3}\), \(3s3p^{2}3d\), \(3s^{2}3d^{2}\), and \(3p^{4}\) configurations for the silicon isoelectronic sequence Cd XXXV-Ba XLIII, W LXI. The calculation is based on the multiconfiguration Dirac–Fock approach, and Breit interaction and quantum electrodynamic corrections are included. Electron correlation effects are taken into account by means of the expansions in terms of a basis of configuration state functions. To achieve the accuracy of the data, independent calculation is provided with similar data obtained from the flexible atomic code, taking W LXI as an example. Our results are compared with each other, and other available theories/experimental values and the energy levels/transition rates for a majority of strong transitions are found to be accurate to be better than 0.5%/10%. The present atomic data should be useful in controlled thermonuclear fusion research and technical plasma modeling.

Keywords

Si-like ions Wavelengths Energies Transition rates 

PACS

95.30.Ky 32.70.Cs 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11504421).

Supplementary material

12648_2018_1348_MOESM1_ESM.pdf (223 kb)
Supplementary material 1 (pdf 222 KB)

References

  1. [1]
    E Träbert, P Beiersdorfer, S B Utter and J R Crespo López-Urrutia Phys. Scr. 58 599 (1998)ADSCrossRefGoogle Scholar
  2. [2]
    E Träbert, A G Calamai, G Gwinner, E J Knystautas, E H Pinnington, J. Phys. B 36 1129 (2003)ADSCrossRefGoogle Scholar
  3. [3]
    E Träbert, J Hoffmann, C Krantz, A Wolf, Y Ishikawa and J A Santana J. Phys. B 42 025002 (2009)Google Scholar
  4. [4]
    M Huang, R Hutton, Y Zou, K Ando and H Oyama Nucl. Instrum. Methods Phys. Res. B 205 119 (2003)ADSCrossRefGoogle Scholar
  5. [5]
    P Bengtsson, K Ando, T Kambara, Y Awaya, Phys. Scr. T73 81 (1997)ADSCrossRefGoogle Scholar
  6. [6]
    E Träbert, M Grieser, C Krantz, R Repnow, A Wolf, F J Diaz, Y Ishikawa and J A Santana J. Phys. B 45 215003 (2012)ADSCrossRefGoogle Scholar
  7. [7]
    E Träbert, Y Ishikawa, J A Santana and G D Zanna Can. J. Phys. 89 403 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    C Biedermann, R Radtke, R Seidel and T Püterich Phys. Scr. T134 014026 (2009)ADSCrossRefGoogle Scholar
  9. [9]
    E Träbert, M Grieser, J Hoffmann, C Krantz, S Reinhardt, R Repnow, A Wolf and P Indelicato New. J. Phys. 13 023017 (2011)ADSCrossRefGoogle Scholar
  10. [10]
    I Khatri, A Goyalal, S Aggarwal, A K Singhb and M Mohana Chin. Phys. B 24 103202 (2015)CrossRefGoogle Scholar
  11. [11]
    M Huang, M Andersson, T Brage, R Hutton, P Jönsson, C Y Chen and Y M Zou J. Phys. B 38 503 (2005)ADSCrossRefGoogle Scholar
  12. [12]
    G P Gupta and A Z Msezane Phys. Scr. 83 055301 (2011)ADSCrossRefGoogle Scholar
  13. [13]
    M J Vilkas, Y Ishikawa and E Träbert J. Phys. B 39 2195 (2006)ADSCrossRefGoogle Scholar
  14. [14]
    M J Vilkas and Y Ishikawa J. Phys. B 37 1803 (2004)ADSCrossRefGoogle Scholar
  15. [15]
    E Charro, I Martin and C Lavin Astron. Astrophys. Suppl. Ser. 124 397 (1997)ADSCrossRefGoogle Scholar
  16. [16]
    C F Fischer J. Phys. B 43 074020 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    A Abou El-Maaref, M A M Uosif, S H Allam and Th M El-Sherbini At. Data Nucl. Data Tables 98 589 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    A Abou El-Maaref, S H Allam and Th M El-Sherbini At. Data Nucl. Data Tables 100 155 (2014)ADSCrossRefGoogle Scholar
  19. [19]
    K Huang At. Data Nucl. Data Tables 32 503 (1985)ADSCrossRefGoogle Scholar
  20. [20]
    K Huang Nucl. Instrum. Methods Phys. Res. B 9 498 (1985)Google Scholar
  21. [21]
    S N Nahar and A K Pradhan J. Phys. B 26 1109 (1993)ADSCrossRefGoogle Scholar
  22. [22]
    S N Nahar Phys. Scr. 48 297 (1993)ADSCrossRefGoogle Scholar
  23. [23]
    P Jönsson, X He, C F Fischer and I P Grant Comput. Phys. Commun. 177 597 (2007)ADSCrossRefGoogle Scholar
  24. [24]
    Z B Chen, K Ma, H W Hu and K Wang Physics of Plasmas 25 052105 (2018)ADSCrossRefGoogle Scholar
  25. [25]
    Z B Chen, H W Hu, K Ma, X B Liu, X L Guo, S Li, B H Zhu, L Huang and K Wang Physics of Plasmas 25 032108 (2018)ADSCrossRefGoogle Scholar
  26. [26]
    M F Gu Can. J. Phys 86 675 (2008)ADSCrossRefGoogle Scholar
  27. [27]
    K Wang, D F Li, H T Liu, X Y Han, B Duan, C Y Li, J G Li, X L Guo, C Y Chen and J Yan Astrophys. J. Suppl. Ser. 215 26 (2014)ADSCrossRefGoogle Scholar
  28. [28]
    Z B Chen, X L Guo and K Wang J. Quant. Spectrosc. Radiat. Transfer. 206, 213 (2018)ADSCrossRefGoogle Scholar
  29. [29]
    Z B Chen Physics of Plasmas 24 122119 (2017)Google Scholar
  30. [30]
    Z B Chen Eur. Phys. J. D 72 67 (2018)Google Scholar
  31. [31]
    Y Ishikawa and M J Vilkas Phys. Rev. A 63 042506 (2000)ADSCrossRefGoogle Scholar
  32. [32]
    K M Aggarwal and F P Keenan At. Data Nucl. Data Tables. 111 187 (2016)ADSCrossRefGoogle Scholar
  33. [33]
    M J Vilkas, Y Ishikawa and E Träbert At. Data Nucl. Data Tables. 94 650 (2008)ADSCrossRefGoogle Scholar
  34. [34]
    A E Kramida and T Shirai At. Data Nucl. Data Tables. 95 305 (2009)ADSCrossRefGoogle Scholar
  35. [35]
    A Kramida, Yu Ralchenko, J Reader and NIST ASD Team (2015). NIST Atomic Spectra Database (version 5.3), [Online]. Available: http://physics.nist.gov/asd [10/14/2015]. National Institute of Standards and Technology, Gaithersburg, MD
  36. [36]
    G Singh and N K Puri J. Phys. B 49 205002 (2016)ADSCrossRefGoogle Scholar
  37. [37]
    P Quinet J. Phys. B 44 195007 (2011)ADSCrossRefGoogle Scholar
  38. [38]
    K M Aggarwal and F P Keenan At. Data Nucl. Data Tables 100 1399 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of applied physics, School of ScienceHunan University of TechnologyZhuzhouChina

Personalised recommendations