Advertisement

Noether theorem for generalized Chaplygin system on time scales

  • S. X. Jin
  • Y. Zhang
Original Paper

Abstract

In this paper, the Noether theorem for generalized Chaplygin system on time scales is proposed and studied. The generalized Chaplygin formula for nonholonomic system on time scales is derived. The Noether theorems for generalized Chaplygin system on time scales are established, and two special cases of the Noether theorems for continuous and discrete generalized Chaplygin systems are given. Finally, two examples are given to illustrate the applications of the results.

Keywords

Noether theorem Conserved quantity Generalized Chaplygin system Time scales 

PACS Nos.

11.30.Na 89.75.Da 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11572212 and 11272227), and the Innovation Program for graduate student of Jiangsu Province (Grant No. KYLX16-0414).

References

  1. [1]
    B Vujanovic Acta Mech. 65 63 (1986)MathSciNetCrossRefGoogle Scholar
  2. [2]
    D Liu Acta Mech. Sin. 5 167 (1989)ADSCrossRefGoogle Scholar
  3. [3]
    F X Mei J. Beijing Inst. Technol. 18 17 (1998) (in Chinese)Google Scholar
  4. [4]
    F X Mei Applications of Lie Group and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (1999) (in Chinese)Google Scholar
  5. [5]
    J H Fang Appl. Math. Mech. 21 755 (2000) (in Chinese)Google Scholar
  6. [6]
    Y Zhang and S X Jin Acta Phys. Sin. 62 234502 (2013) (in Chinese)Google Scholar
  7. [7]
    X H Zhai and Y Zhang Nonlinear Dyn. 77 73 (2014)CrossRefGoogle Scholar
  8. [8]
    Y Zhang Chin. J. Phys. 49 1005 (2011)Google Scholar
  9. [9]
    G S F Frederico and D F M Torres J. Math. Anal. Appl. 334 834 (2007)MathSciNetCrossRefGoogle Scholar
  10. [10]
    S X Jin and Y Zhang Nonlinear Dyn. 79 1169 (2015)CrossRefGoogle Scholar
  11. [11]
    Y Zhang and X H Zhai Nonlinear Dyn. 81 469 (2015)CrossRefGoogle Scholar
  12. [12]
    S K Luo, Y. Dai, et al Int. J. Non-Linear Mech. 97 107 (2017)Google Scholar
  13. [13]
    B Georgieva and R Guenther Topol Methods Nonlinear Anal. 20 261 (2002)MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y Zhang Int. J Nonlinear Mech. 101 36 (2018)CrossRefGoogle Scholar
  15. [15]
    X Tian and Y Zhang Int. J Theor. Phys. 57 887 (2018)CrossRefGoogle Scholar
  16. [16]
    S Hilger PhD thesis Ein Mαβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten (Universit at Würzburg) (1988)Google Scholar
  17. [17]
    F M Atici, D C Biles and A Lebedinsky Math. Comput. Model 43 718 (2006)CrossRefGoogle Scholar
  18. [18]
    M Bohner and A Peterson Dynamic Equations on Time Scale: An Introduction with Applications (Boston: Birkhäuser) (2001)CrossRefGoogle Scholar
  19. [19]
    L Bourdin and E Trélat Math. Control Relat. F. 6 53 (2016)CrossRefGoogle Scholar
  20. [20]
    M Bohner Dynam. Sys. Appl. 13 339 (2004)Google Scholar
  21. [21]
    N Martins and D F M Torres Nonlinear Anal. 71 e763 (2009)CrossRefGoogle Scholar
  22. [22]
    D F M Torres Int. J. Simul. Multi. Des. Optim. 4 11 (2010)Google Scholar
  23. [23]
    A C F Rui and D F M Torres Math. Control Theor. Fin. 136 149 (2008)Google Scholar
  24. [24]
    Z Bartosiewicz and D F M Torres J. Math. Anal. Appl. 342 1220 (2008)MathSciNetCrossRefGoogle Scholar
  25. [25]
    N Martins and D F M Torres Appl. Math. Lett. 23 1432 (2010)MathSciNetCrossRefGoogle Scholar
  26. [26]
    A B Malinowska and N Martins Abstract Appl. Anal. 2013 1728 (2013)CrossRefGoogle Scholar
  27. [27]
    A B Malinowska and M R S Ammi Int. J. Differ. Eqs. 9 87 (2014)Google Scholar
  28. [28]
    C J Song and Y Zhang J. Math. Phys. 56 1 (2015)CrossRefGoogle Scholar
  29. [29]
    J Song and Y Zhang Chin. Phys. B 26 084501 (2017)ADSCrossRefGoogle Scholar
  30. [30]
    X H Zhai and Y Zhang Commun. Nonlinear Sci. Numer. Simulat. 52 32 (2017)ADSCrossRefGoogle Scholar
  31. [31]
    S X Jin and Y Zhang Chin. Phys. B 26 014501 (2017)ADSCrossRefGoogle Scholar
  32. [32]
    S X Jin and Y Zhang Chin. Quart. Mech. 38 447 (2017) (in Chinese)Google Scholar
  33. [33]
    F X Mei Analytical Mechanics II (Beijing: Beijing Institute of Technology Press) (2013) (in Chinese)Google Scholar
  34. [34]
    S K Luo J. Xinjiang Univ. 5 50 (1988)Google Scholar
  35. [35]
    S K Luo Appl. Math. Mech. 17 683 (1996)CrossRefGoogle Scholar
  36. [36]
    S K Luo Appl. Math. Mech. 19 45(1998)Google Scholar
  37. [37]
    P P Cai, J L Fu and Y X Guo Sci. China Phys. Mech. Astron. 56 1017 (2013)CrossRefGoogle Scholar
  38. [38]
    Q H Zu and J Q Zhu J. Math. Phys. 57 18 (2016)CrossRefGoogle Scholar
  39. [39]
    S X Jin and Y Zhang Chin. Phys. B 27 020502 (2018)ADSCrossRefGoogle Scholar
  40. [40]
    Z Bartosiewicz, N Martins and D F M Torres Eur. J. Control 17 9 (2010)Google Scholar
  41. [41]
    X J Xu and F X Mei J. Beijing Inst. Technol. 22 143 (2002) (in Chinese)MathSciNetGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.College of Civil EngineeringSuzhou University of Science and TechnologySuzhouPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsShangqiu Normal UniversityShangqiuPeople’s Republic of China
  3. 3.School of ScienceNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations