Using RF inductive rings to improve the efficiency of a designed pulsed plasma jet

  • R. Jaafarian
  • A. GanjoviEmail author
Original Paper


In this work, the radiofrequency inductive rings are placed on a pulsed plasma jet plume to improve its efficiency and capability. The optical emission spectroscopy method is used to examine the physical and technical features of the improved pulsed plasma jet. The influences of applied impulse voltage and frequency on the pulsed plasma jet along with the inductive rings diameter and its turns and applied RF voltage amplitude on its performance are studied. It is seen that, at the higher applied voltages and frequencies on the pulsed plasma jet, while the plasma density is increased, the plasma electron excitation and rotational temperatures will decrease. Furthermore, the inductive RF voltage application on the rings enhances the ionization rate and plasma density of the jet, and consequently, the excitation and rotational temperatures of plasma electrons are reduced. Increasing of the applied inductive RF voltage amplitudes on the ring will result in the higher electrons density and reduction in the excitation and rotational temperatures. It is shown that, at the higher inductive ring diameters and its turns, the excitation temperature of plasma electrons is reduced.


Atmospheric pressure plasma jet RF inductive rings Optical emission spectroscopy 

PACS numbers

52.25.−b 52.25.Jm 52.25.Xz 52.70.−m 52.75.−d 


  1. [1]
    G Fridman, A Shereshevsk, D Jost, M M Brooks, A Fridman, A Gutsol et al Plasma Chem. Plasma Process. 27 163 (2007)CrossRefGoogle Scholar
  2. [2]
    R Foest, E Kindel, H Lange, A Ohl, M Stieber and K D Weltmann Contrib. Plasma Phys. 47 119 (2007)ADSCrossRefGoogle Scholar
  3. [3]
    R Dorai and M J Kushner J. Phys. D Appl. Phys. 36 666 (2003)ADSCrossRefGoogle Scholar
  4. [4]
    G Daeschlein, T Woedtke, E Kindel, R Brandenburg, K D Weltmann and M Junger Plasma Process. Polym. 7 224 (2010)CrossRefGoogle Scholar
  5. [5]
    T C Corke, C L Enloe and S P Wilkinson Annu. Rev. Fluid Mech. 42 505 (2010)ADSCrossRefGoogle Scholar
  6. [6]
    J Florian, N Merbahi, G Wattieaux, J M Plewa and M Yousfi IEEE Trans. Plasma Sci. 43 3332 (2015)ADSCrossRefGoogle Scholar
  7. [7]
    X Lu, M Laroussi and V Puech Plasma Sources Sci. Technol. 21 034005 (2012)ADSCrossRefGoogle Scholar
  8. [8]
    T N Jukes, K S Choi, G A Jonhson and S J Scott Turbulent boundary layer control for drag reduction using surface plasma In AIAA Meeting 3693 (eds.) K S Choi, J R Debisschop and B R Clayton (Portland: AIAA) p 2006 (2006)Google Scholar
  9. [9]
    S J Kim, T H Chung, S H Bae and S H Leem Appl. Phys. Lett. 94 141502 (2009)ADSCrossRefGoogle Scholar
  10. [10]
    T Yuji, M Suzaki, T Yamawaki, H Sakaue and H Akatsuka Jpn. J. Appl. Phys. 46 795 (2007)ADSCrossRefGoogle Scholar
  11. [11]
    M Laroussi IEEE Trans. Plasma Sci. 37 714 (2009)ADSCrossRefGoogle Scholar
  12. [12]
    E Stoffels, A J Flikweert, W W Stoffels and G M W Kroesen Plasma Sources Sci. Technol. 11 383 (2002)ADSCrossRefGoogle Scholar
  13. [13]
    N K Bibinov, D B Kokh, N B Kolokolov, V A Kostenko, D Meyer et al Plasma Sources Sci. Technol. 7 298 (1998)ADSCrossRefGoogle Scholar
  14. [14]
    K Behringer and U Fantz J. Phys. D Appl. Phys. 27 2128 (1994)ADSCrossRefGoogle Scholar
  15. [15]
    D A O Hope, T I Cox and V G Deshmukh J. Vac. 37 275 (1987)CrossRefGoogle Scholar
  16. [16]
    L Moravsky, M Klas, S Matejcik and E Machova Proceedings of the 22nd annual conference of doctoral students, Thessaloniki In SEERC: 22nd and 23rd (eds) I Paraskakis, A Luneski and A Kayhan (Greece: European Research Centre) p 149 (2013)Google Scholar
  17. [17]
    National Institute of Standards and Technology (NIST).
  18. [18]
    V M Donnelly J. Phys. D Appl. Phys. 37 R217 (2004)ADSCrossRefGoogle Scholar
  19. [19]
    J Ying, R Chunsheng, Y Liang, Z Jialiang and W Dezhen Plasma Source Sci.Technol. 15 1203 (2013)CrossRefGoogle Scholar
  20. [20]
    S Pandhija and A K Rai J. Appl. Phys. B 94 545 (2009)ADSCrossRefGoogle Scholar
  21. [21]
    M C Quintero, A M Rodero, C Garcia and A Sola Appl. Spectrosc. 51 778 (1997)ADSCrossRefGoogle Scholar
  22. [22]
    A Nikiforov, Ch Yu Leys, M A Gonzalez and J L Walsh Plasma Sources Sci. Technol. 24 034001 (2015)ADSCrossRefGoogle Scholar
  23. [23]
    J Florian, N Merbahi, G Wattieaux, J M Plewa and M Yousfi IEEE Trans. Plasma Sci. 43 3332 (2015)ADSCrossRefGoogle Scholar
  24. [24]
    M Laroussi and T Akan Plasma Process. Polym. 4 777 (2007)CrossRefGoogle Scholar
  25. [25]
    A Schutze, J Y Jeong, S E Babayan, J Park, G S Selwyn and R F Hicks IEEE Trans. Plasma Sci. 26 1685 (1998)ADSCrossRefGoogle Scholar
  26. [26]
    S Djurović and N Konjević Plasma Sources Sci. Technol. 18 035011 (2009)ADSCrossRefGoogle Scholar
  27. [27]
    M S Dimitrijevi, M Christova and S Sahal-Brechot Phys. Scr. 75 809 (2007)ADSCrossRefGoogle Scholar
  28. [28]
    L Dong, J Ran and Zh Mao Appl. Phys. Lett. 86 161501 (2005)ADSCrossRefGoogle Scholar
  29. [29]
    H R Griem Principle of Plasma Spectroscopy (Port Melbourne: Cambridge University Press) p 1451964Google Scholar
  30. [30]
    N Konjević Phys. Rep. 316 339 (1999)ADSCrossRefGoogle Scholar
  31. [31]
    H Y Moon, K K Herrera, N Omenetto, B W Smith and J D Winefordner Spectrochim. Acta B 64 702 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    A W Ali, H R Griem Phys. Rev. 144 366 (1966)ADSCrossRefGoogle Scholar
  33. [33]
    Q Xiong, A Nikiforov, X Lu, N Britun, M Snyders and C Leys. J. Phys. D Appl. Phys. 110 073302 (2011)ADSCrossRefGoogle Scholar
  34. [34]
    S G Belostotskiy, T Ouk, V M Donnelly, D J Economou and N Sadeghi J. Appl. Phys. 107 053305 (2010)ADSCrossRefGoogle Scholar
  35. [35]
    Y Kubota, R Ichiki, T Hara, N Yamaguchi and Y Takemura J. Plasma Fusion Res. 8 740 (2009)Google Scholar
  36. [36]
    J H Kim, Y H Kim, Y H Choia, W Choeb, J J Choic and Y S Hwang Surf. Coat. Technol. 171 211 (2003)CrossRefGoogle Scholar
  37. [37]
    R C Pankhurst Proc. Phys. Soc. 52 388 (1940)ADSCrossRefGoogle Scholar
  38. [38]
    M P F Bristow and M McChesney Proc. Phys. Soc. 85 1237 (1965)ADSCrossRefGoogle Scholar
  39. [39]
    G Herzberg Elementary Methods of Molecular Quantum Mechanics (Elsevier: New York) Chapter 3, p 354 (1963)Google Scholar
  40. [40]
    G Wattieaux, M Yousfi and N Merbahi Spectrochim. Acta B Atom. Spectrosc. 89 66 (2013)ADSCrossRefGoogle Scholar
  41. [41]
    Q Xiong, AY Nikiforov, M A González, C Leys and X P Lu Plasma Sources Sci. Technol. 22 015011 (2012)ADSCrossRefGoogle Scholar
  42. [42]
    J M Palomares, S Hübner and E A D Carbone Spectrochim. Acta Part B 73 39 (2012)ADSCrossRefGoogle Scholar
  43. [43]
    V Milosavljevic and G Poparic Phys. Rev. E 63 036404 (2001)ADSCrossRefGoogle Scholar
  44. [44]
    Q Xiong, A Y Nikiforov, X P Lu and C Leys J. Phys. D Appl. Phys. 43 415201 (2010)CrossRefGoogle Scholar
  45. [45]
    S Sahal-Bréchot Astron. Astrophys. 1 91 (1969)ADSGoogle Scholar
  46. [46]
    M Qian, C Ren, D Wang, J Zhang and G Wei J. Appl. Phys. 107 063303 (2010)ADSCrossRefGoogle Scholar
  47. [47]
    N Venkateswaran, L R Laxminarayan and T C Noel AIAA J. 48 297 (2010)CrossRefGoogle Scholar
  48. [48]
    K D Weltmann, E Kindel, R Brandenburg, C Meyer, R Bussiahn, C Wilke et al Contrib. Plasma Phys. 49 631 (2009)ADSCrossRefGoogle Scholar
  49. [49]
    M Aflori, C Gaman, L M Ivan, M Mihai-Plugaru and D G Dimitriu Am. Phys. Soc. 49 32 (2004)Google Scholar
  50. [50]
    M Aflori, G Amarandei, L M Ivan, D G Dimitriu and D Dorohoi Acta Phys. Slovaca 55 491 (2005)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Laser Research Department, Photonics Research Institute, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations