Evolution of degree of polarization of partially coherent beams propagation in slant and horizontal atmospheric turbulence

  • X. Z. Ke
  • J. WangEmail author
  • M. J. Wang
Original Paper


In this paper, the analytical expressions for the degree of polarization (DoP) of the electromagnetic Gaussian Schell-model (GSM) beam propagating along a slant path in atmospheric turbulence are obtained. The expressions are used to analyze factors such as the waist radius, amplitude ratio, wavelength, and refractive-index structure constant of the polarization properties of the GSM beam, and we come to some new conclusions. The main results that when the components of the waist radius are equal (σx = σy), there is a waist radius within 2 cm < σx < 4 cm that can provide the most concentrated DoP distribution, and the axis point DoP will eventually approach the initial value as the transmission distance increases, implying that it exhibits self-recovering characteristics. In addition, compared to a horizontal path, the DoP distribution of the GSM beam propagating along a slant path is more concentrated, and the propagation distance corresponding to the maximum axis point DoP is longer. Therefore, when the GSM beam propagates along a slant path, the detector can receive information at longer distances. The research results provide a theoretical support for the control of the polarization state of local beam in coherent optical communication systems.


Coherent optical communication systems Polarization control Atmospheric turbulence 


42.25.Ja 42.25.Kb 42.25.Dd 42.68.Bz 



Project supported by the National Natural Science Foundation of China (NSFC) (61377080, 61771385); Key Industrial Innovation Chain Project of Shaanxi Province (2017ZDCXL-GY-06-01); Xi’an Science and Technology Planning Project (2017080CG/RC043(XALG015)); Natural Science Basic Research Program (2018JQ6032).


  1. [1]
    J L A Perez IEEE Trans. Geosci. Remote 49 426 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    C J Yu and C M Hsieh IEEE Photonic Technol. 28 1229 (2016)ADSCrossRefGoogle Scholar
  3. [3]
    X Tang, Z Ghassemlooy, S Rajbhandari, W O Popoola and C G Lee J. Lightwave Technol. 30 2689 (2012)ADSCrossRefGoogle Scholar
  4. [4]
    G P Agrawal and E Wolf J. Opt. Soc. Am. A 17 2019 (2000)ADSCrossRefGoogle Scholar
  5. [5]
    M Salem, O Korotkova, A Dogariu and E Wolf Waves Random Media 14 513 (2004)ADSCrossRefGoogle Scholar
  6. [6]
    H T Eyyuboğlu, Y Baykal and Y Cai Appl. Phys. B 89 91 (2007)ADSCrossRefGoogle Scholar
  7. [7]
    R Zhang, X Z Wang and X Cheng Opt. Express 20 1421 (2012)ADSCrossRefGoogle Scholar
  8. [8]
    R Zhang, X Z Wang, X Cheng and Z C Qiu J. Opt. Soc. Am. A 27 2496 (2010)ADSCrossRefGoogle Scholar
  9. [9]
    L C Zhang, X Yin and Y Zhu Optik 125 3272 (2014)ADSCrossRefGoogle Scholar
  10. [10]
    M Gao, L Gong and P L Wu Optik 125 4860 (2014)ADSCrossRefGoogle Scholar
  11. [11]
    M Gao, Y Li, H Lv and L Gong Infrared Phys. Technol. 67 98 (2014)ADSCrossRefGoogle Scholar
  12. [12]
    J Ou, Y S Jiang and Y T He Opt. Laser Technol. 67 1 (2015)ADSCrossRefGoogle Scholar
  13. [13]
    E Wolf Phys. Lett. A 312 263 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    O Korotkova and E Wolf Opt. Commun. 246 35 (2005)ADSCrossRefGoogle Scholar
  15. [15]
    H Roychowdghury, S A Ponomarenko and E WOLF J. Mod. Optic 52 1611 (2005)ADSCrossRefGoogle Scholar
  16. [16]
    Y Cui, C Wei, Y T Zhang, F Wang and Y J Cai Opt. Commun. 354 353 (2015)ADSCrossRefGoogle Scholar
  17. [17]
    X H Zhao, Y Yao, Y X Sun and C Liu Opt. Express 17 17888 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    M Verma, P Senthilkumaran, J Joseph and H C Kandpal Opt. Express 21 15432 (2013)ADSCrossRefGoogle Scholar
  19. [19]
    X Du and D Zhao Opt. Express 17 4257 (2009)ADSCrossRefGoogle Scholar
  20. [20]
    Y Zhu and D Zhao Appl. Phys. B 96 155 (2009)ADSCrossRefGoogle Scholar
  21. [21]
    M Luo and D Zhao Opt. Commun. 336 98 (2015)ADSCrossRefGoogle Scholar
  22. [22]
    S Zhu, Y Cai and O Korotkova Opt. Express 18 12587 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    Y Zhao, M Xia, Q Wang, Y Li, Z Hu, H Sun and Y Zhang Opt. Appl. 46 335 (2016)Google Scholar
  24. [24]
    Y Zhao, Y Zhang, Z Hu, Y Li and D Wang Opt. Commun. 371 178 (2016)ADSCrossRefGoogle Scholar
  25. [25]
    X L Ji and X W Chen Opt. Laser Technol. 41 165 (2009)ADSCrossRefGoogle Scholar
  26. [26]
    T Voipio, T Setala and T Friberg J. Opt. Soc. Am. A 30 71 (2013)ADSCrossRefGoogle Scholar
  27. [27]
    Y P Huang, F H Wang, Z H Gao and B Zhang Opt. Express 23 1088 (2015)ADSCrossRefGoogle Scholar
  28. [28]
    H Y Wang, H L Wang, Y X Xu and X M Qian Opt. Laser Technol. 56 1 (2015)ADSCrossRefGoogle Scholar
  29. [29]
    O Korotkova Opt. Lett. 40 3077 (2015)ADSCrossRefGoogle Scholar
  30. [30]
    O Korotkova and E Wolf Opt. Lett. 30 198 (2005)ADSCrossRefGoogle Scholar
  31. [31]
    X H Zhao, Y Yao, Y X Sun and C Liu Opt. Express 17 17888 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    S C H Wang and M A Plonus J. Opt. Soc. Am. 69 1297 (1979)ADSCrossRefGoogle Scholar
  33. [33]
    L C Andrews and R L Phillips Laser beam propagation through random media (Bellingham, 2005)Google Scholar
  34. [34]
    A Dogariu, E Wolf and T. Shirai J. Opt. So. Am. A 20 1094 (2003)ADSCrossRefGoogle Scholar
  35. [35]
    H Roychowdhury and O Korotkova Opt. Commun. 249 379 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.School of Automation and Information EngineeringXi’an University of TechnologyXi’anChina
  2. 2.Faculty of Physics and Telecommunications EngineeringShaanxi University of TechnologyHanzhongChina

Personalised recommendations