Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 495–502 | Cite as

Sub-micron and nanosized features in laser-induced periodic surface structures

  • N. BerezovskaEmail author
  • I. Dmitruk
  • S. Vovdenko
  • O. Yeshchenko
  • P. Teselko
  • A. Dmytruk
  • I. Blonskyi
Original Paper
  • 116 Downloads

Abstract

The present report concentrates on little known peculiarities of laser-induced periodic surface structures (LIPSS) on metals and alloys formed upon irradiation by linearly polarized Ti/sapphire femtosecond laser pulses with the energy density of 0.17–1.0 J/cm2 in air environment. The peculiarities discussed are spontaneous twofold reduction in period and appearance of dislocations in the quasi-grating LIPSS. The twofold reduction in period is interpreted as a result of the second harmonic generation (SHG) of the laser light on the surface, stimulated and enhanced by surface roughness. LIPSS with two times shorter period stimulate SHG, and in this way a positive feedback mechanism works. The dislocations in the LIPSS are explained as the interference of scattered wave, which may contain optical vortices, with the incident plane wave. The quasi-grating with the dislocations works as a spatial phase modulator for the scattered wave and provides a positive feedback for enhancement of the dislocations. A successful example of application of LIPSS on noble metals as a SERS substrate and a discussion of their features important for such application is presented.

Keywords

LIPSS Surface plasmon Optical vortex SERS 

PACS Nos.

81.16.Rf 52.38.Mf 79.20.Ds 78.30.-j 

Notes

Acknowledgements

Authors appreciate financial support of NATO Science for Peace and Security (SPS) Programme (Grant NUKR.SFPP 984617) and technical support of Femtosecond Laser Center for Collective Use of NAS of Ukraine.

References

  1. [1]
    A Y Vorobyev and C Guo Opt. Express 14 2164 (2006)ADSCrossRefGoogle Scholar
  2. [2]
    A Borowiec and H K Haugen Appl. Phys. Lett. 82 4462 (2003)ADSCrossRefGoogle Scholar
  3. [3]
    B Öktem, I Pavlov, S Ilday, H Kalaycioglu, A Rybak, S Yavas, M Erdogan and F Ö Ilday Nat. Photon. 7 897 (2013)ADSCrossRefGoogle Scholar
  4. [4]
    J Bonse, J Kruger, S Höhm and A Rosenfeld J. Laser Appl. 24 042006-1 (2012)ADSCrossRefGoogle Scholar
  5. [5]
    E L Gurevich and S V Gurevich Appl. Surf. Sci. 302, 118 (2014)ADSCrossRefGoogle Scholar
  6. [6]
    O Varlamova, C Martens, M Ratzke and J Reif Appl. Opt. 53, 10 (2014)CrossRefGoogle Scholar
  7. [7]
    A Vorobyev and C Guo Laser Photon. Rev. 7, 385 (2013)ADSCrossRefGoogle Scholar
  8. [8]
    R Buividas, M Mikutis and S. Juodkazis Prog. Quant. Electron. 38, 119 (2014)ADSCrossRefGoogle Scholar
  9. [9]
    A Vorobyev and C Guo J. Appl. Phys. 117, 033103 (2015)ADSCrossRefGoogle Scholar
  10. [10]
    J Bonse, S V Kirner, S Höhm, N Epperlein, D Spaltmann, A Rosenfeld and J Krüger Proc. SPIE 10092, 100920N (2017)Google Scholar
  11. [11]
    J Bonse, A Rosenfeld and J Krüger J. Appl. Phys. 106, 104910 (2009)ADSCrossRefGoogle Scholar
  12. [12]
    T J-Y Derrien, T E Itina, R Torres, T Sarnet and M Sentis, J. Appl. Phys. 114, 083104 (2013)ADSCrossRefGoogle Scholar
  13. [13]
    E D Diebold, N M Mack, S K Doorn and E Mazur Langmuir 25, 1790 (2009)CrossRefGoogle Scholar
  14. [14]
    R Buividas, P R Stoddart and S Juodkazis Ann. Physik (Berlin) 524, L5 (2012)ADSCrossRefGoogle Scholar
  15. [15]
    Y Han,·X Lan, T Wei, H-L Tsai and H Xiao Appl. Phys. A 97, 72 (2009)CrossRefGoogle Scholar
  16. [16]
    A Wang, L Jiang, X Li, Q Xie, B Li, Z Wang, K Du and Y Lu J. Mater. Chem. B5 777 (2017)CrossRefGoogle Scholar
  17. [17]
    Y Dai, M He, B Lu, X Yan and G Ma Phys. Conf. Ser. 276 012015 (2011)CrossRefGoogle Scholar
  18. [18]
    Y Dai, M He, H Bian, B Lu, X Yan and·G Ma Appl. Phys. A 106 567 (2012)ADSCrossRefGoogle Scholar
  19. [19]
    C H Lin, L Jiang, Y H Chai, H Xiao, S J Chen and H L Tsai Opt Express. 17 21581 (2009)ADSCrossRefGoogle Scholar
  20. [20]
    Z Zhou, J Xu, F He, Y Liao, Y Cheng, K Sugioka and K Midorikawa Jpn. J. Appl. Phys. 49 022703 (2010)ADSCrossRefGoogle Scholar
  21. [21]
    S Hamad, G Krishna Podagatlapalli, Md Ahamad Mohiddon and V Rao Soma Appl. Phys. Lett. 104 263104 (2014)ADSCrossRefGoogle Scholar
  22. [22]
    S Hamad, G Krishna Podagatlapalli, M A Mohiddon and V Rao Soma. Adv. Mater. Lett. 6 1073 (2015)CrossRefGoogle Scholar
  23. [23]
    A A Ionin, S I Kudryashov, A E Ligachev, S V Makarov, N N Mel’nik, A A Rudenko, L V Seleznev, D V Sinitsyn and R A Khmelnitsky Quantum Electron. 43 304 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    V G Ivanov, E S Vlakhov, G E Stan, M Zamfirescu, C Albu, N Mihailescu, I Negut, C Luculescu, M Socol, C Ristoscu and I N Mihailescu J. Appl. Phys. 118 203104 (2015)ADSCrossRefGoogle Scholar
  25. [25]
    H W Chang, Y C Tsai, C W Cheng, C Y Lin, Y W Lin and T M Wu J. Colloid Interface Sci. 360 305 (2011)ADSCrossRefGoogle Scholar
  26. [26]
    H Messaoudi, S K Das, J Lange, F Heinrich, S Schrader, M Frohme and R Grunwald, Proc. SPIE 8972, 89720H-1 (2014).CrossRefGoogle Scholar
  27. [27]
    S Sakabe, M Hashida, S Tokita, S Namba and K Okamuro Phys. Rev. B 79 033409 (2009)ADSCrossRefGoogle Scholar
  28. [28]
    M Okamuro, M Hashida, Y Miyasaka, Y Ikuta, S Tokita and S Sakabe Phys. Rev. B 82 165417-1 (2010)ADSCrossRefGoogle Scholar
  29. [29]
    A Y Vorobyev and C L Guo J. Appl. Phys. 104 063523 (2008)ADSCrossRefGoogle Scholar
  30. [30]
    A Y Vorobyev, V S Makin and C Guo J. Appl. Phys. 101 034903 (2007)ADSCrossRefGoogle Scholar
  31. [31]
    S.K. Das, A. Andreev, H. Messaoudi, J. Braenzel, M. Schnuerer and R. Grunwald J. Appl. Phys. 1019 113101 (2016)ADSCrossRefGoogle Scholar
  32. [32]
    S Hou, Y Huo, P Xiong, Y Zhang, S Zhang, T Jia, Z Sun, J Qiu and Z Xu J. Phys. D 44 505401 (2011)ADSCrossRefGoogle Scholar
  33. [33]
    J Bonse, M Munz and H Sturm J. Appl. Phys. 97 013538 (2005)ADSCrossRefGoogle Scholar
  34. [34]
    P Vaity, A Aadhi and R P Singh Appl. Opt. 52 6652 (2013)ADSCrossRefGoogle Scholar
  35. [35]
    J E Curtis and D G Grier Phys. Rev. Lett. 90 133901 (2003)ADSCrossRefGoogle Scholar
  36. [36]
    M Padgett, J Courtial and L Allen Physics Today 57 35 (2004)ADSCrossRefGoogle Scholar
  37. [37]
    N B Baranova, B J Zeldovich, A B Mamaev, N F Pilipetskii and V V Shkunov Soviet JETP Lett. 33 206 (1981)Google Scholar
  38. [38]
    J P Schmidt, S E Cross and S K Buratto J. Chem. Phys. 121 10657 (2004)ADSCrossRefGoogle Scholar
  39. [39]
    L Schade, S Franzka, M Biener, J Biener and N Hartmann Appl. Surf. Sci. 374 19 (2016)ADSCrossRefGoogle Scholar
  40. [40]
    E Rebollar, M Hernández, M Sanz, S Pérez, T A Ezquerra and M Castillejo J. Appl. Polym. Sci. 132 4277 (2015)CrossRefGoogle Scholar
  41. [41]
    P Hildebrandt and M J Stockburger Phys. Chem. 88 5935 (1984)CrossRefGoogle Scholar
  42. [42]
    H Watanabe, N Hayazawa, Y Inouye and S J Kawata Phys. Chem. B 109 5012 (2005)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • N. Berezovska
    • 1
    Email author
  • I. Dmitruk
    • 1
  • S. Vovdenko
    • 1
  • O. Yeshchenko
    • 1
  • P. Teselko
    • 1
  • A. Dmytruk
    • 2
  • I. Blonskyi
    • 2
  1. 1.Faculty of PhysicsTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Photon Processes, Institute of PhysicsNAS of UkraineKyivUkraine

Personalised recommendations