Indian Journal of Physics

, Volume 93, Issue 4, pp 511–521 | Cite as

Analysis of photonic band gaps in metamaterial-based one-dimensional ternary photonic crystals

  • Zheng Li
  • Zhou Ge
  • Xue-Yan Zhang
  • Zheng-Yue Hu
  • Dan Zhao
  • Jian-Wei WuEmail author
Original Paper


In the present work, we propose a one-dimensional ternary photonic crystals composed of alternatively stacked dispersive metamaterial layers including double-negative (electric permittivity ε < 0 and magnetic permeability μ < 0) material, epsilon-negative material (ε < 0, but μ > 0), and mu-negative material (μ < 0, but ε > 0) within some frequency ranges. Various types of photonic band gaps including Bragg gaps, zero-permittivity gap, zero-permeability gap, and a special band gap are, respectively, presented and discussed against the periodic number, thickness of dielectric layer, and incident angle. In the case of normal incidence, the band width, position, and transmittance for the Bragg and special band gaps are related to the thickness of each layer and periodic number. Under the oblique incidence (incident angle 0° < θ < 90°) condition, both the zero-permittivity band gap for TM wave and zero-permeability band gap for TE wave are achieved, which are significantly broadened and blue-shifted with respect to the increase in incident angle. As such, the incident angle-dependent Bragg band gaps and special band gap are also exhibited by selecting TE- and TM-polarized waves, respectively.


Photonic crystals One-dimensional structure Metamaterials Photonic band gaps 


42.15.Eq 42.70.Qs 41.20.Jb 



This work was supported in part by the Open Foundation of State Key Laboratory on Integrated Optoelectronics under Grant IOSKL2016KF02.


  1. [1]
    J D Joannopoulos, S G Johnson, J N Winn and R D Meade Photonic Crystals-Molding the Flow of Light. (Princeton: Princeton University Press) (2008)zbMATHGoogle Scholar
  2. [2]
    I Venditti Materials 10 97 (2017)ADSCrossRefGoogle Scholar
  3. [3]
    D Q Yang, C Wang and Y F Ji IEEE Photon. J. 8 4500608 (2016)Google Scholar
  4. [4]
    H P Adl, F Bayat, N Ghorani, S Ahmadi-Kandjani and H Tajalli IEEE Sens. J. 17 4046 (2017)ADSCrossRefGoogle Scholar
  5. [5]
    A H Aly and A Mehaney Indian J. Phys. 91 1021 (2017)ADSCrossRefGoogle Scholar
  6. [6]
    J S Wang, L Pei, S J Weng, L Y Wu, L Huang, T G Ning and J Li IEEE Photon. J. 9 2200410 (2017)Google Scholar
  7. [7]
    F Mehdizadeh, M Soroosh, H Alipour-Banael and E Farshidi IEEE Photon. J. 9 4700311 (2017)Google Scholar
  8. [8]
    Y Zhang, X Z Qiu, C Zeng, D P Li, G Gao, Y Wang, J Z Yu and J S Xia IEEE Photon. Technol. Lett. 27 1120 (2015)CrossRefGoogle Scholar
  9. [9]
    Z M Meng, F Qin and Z Y Li J. Opt. 14 065003 (2012)ADSCrossRefGoogle Scholar
  10. [10]
    M Upadhyay, S K Awasthi, L Shiveshwari, S N Shukla and S P Ojha, Indian J. Phys. 90 353 (2016)ADSCrossRefGoogle Scholar
  11. [11]
    Y Li, W Y Zhou, C F Ying, N Yang, S J Chen, Q Ye and J G Tian J. Opt. 17 065403 (2015)ADSCrossRefGoogle Scholar
  12. [12]
    R A Hussein, M F Hameed and S A Obayya IEEE J. Sel. Top. Quant. Electron. 22 4900908 (2016)CrossRefGoogle Scholar
  13. [13]
    K R Khan, M F Mahmood and A Biswas IEEE J. Sel. Top. Quant. Electron. 20 7500309 (2014)CrossRefGoogle Scholar
  14. [14]
    H F Zhang and S B Liu IEEE J. Sel. Top. Quant. Electron. 21 4900108 (2015)Google Scholar
  15. [15]
    J M Andre and P Jonnard J. Opt. 17 085609 (2015)ADSCrossRefGoogle Scholar
  16. [16]
    R Y Tang, J W Wu and B Nakarmi Quantum Electron. 46 640 (2016)CrossRefGoogle Scholar
  17. [17]
    T F Khalkhali and A Bananej Opt. Commun. 369 79 (2016)ADSCrossRefGoogle Scholar
  18. [18]
    F C Peng, M Y Jiang and J W Wu Optoelectron. Adv. Mat. 11 12 (2017)Google Scholar
  19. [19]
    N Kaina, F Lemoult, M Fink and G Lerosey Nature 525 77 (2015)Google Scholar
  20. [20]
    Z Y Duan, X F Tang, Z L Wang, Y B Zhang, X D Chen, M Chen and Y B Gong Nat. Commun. 8 14901 (2017)ADSCrossRefGoogle Scholar
  21. [21]
    S P Burgos, R D Waele and A A Polman Nat. Mater. 9 407 (2010)Google Scholar
  22. [22]
    V G Veselago Sov. Phys. Usp. 10 509 (1968)Google Scholar
  23. [23]
    D R Smith, W J Padilla, D C Vier, S C Nemat-Nasser and S Schultz Phys. Rev. Lett. 84 4184 (2000)ADSCrossRefGoogle Scholar
  24. [24]
    Y Xiang, X Dai, S Wen and D Fan J. Appl. Phys. 102 093107 (2007)ADSCrossRefGoogle Scholar
  25. [25]
    Y Xiang, X Dai, S Wen, Z Tang and D Fan Appl. Phys. B 102 897 (2011)Google Scholar
  26. [26]
    R A Depine, M L Martinez-Ricci, J A Monsoriu, E Silvestre and P Andres Phys. Lett. A 364 352 (2007)ADSCrossRefGoogle Scholar
  27. [27]
    G Q Du, H T Jiang, H Q Li, Y W Zhang and H Chen Chin. Phys. Lett. 25 2900 (2008)Google Scholar
  28. [28]
    D W Yeh and C J Wu Opt. Express 17 16666 (2009)ADSCrossRefGoogle Scholar
  29. [29]
    Z L Wang, H T Jiang, Y H Li and H Chen Opt. Express 18 14311 (2010)ADSCrossRefGoogle Scholar
  30. [30]
    H T Jiang, H Chen, H Q Li, Y W Zhang, J Zi and S Y Zhu Phys. Rev. E 69 066607 (2004)Google Scholar
  31. [31]
    L Wu, S L He and L Chen Opt. Express 11 1283 (2003)ADSCrossRefGoogle Scholar
  32. [32]
    M Z Ali and T Abdullah Chin. Phys. Lett. 25 137 (2008)CrossRefGoogle Scholar
  33. [33]
    J Li, L Zhou, C T Chan and P Sheng Phys. Rev. Lett. 90 083901 (2003)ADSCrossRefGoogle Scholar
  34. [34]
    S A Taya and S A Shaheen Indian J. Phys. 92 519 (2018)ADSCrossRefGoogle Scholar
  35. [35]
    X Li, K Xie and H M Jiang Chin. Opt. Lett. 6 130 (2008)CrossRefGoogle Scholar
  36. [36]
    Y H Chen Opt. Express 18 19920 (2010)Google Scholar
  37. [37]
    A Jafari and A Rahmat Indian J. Phys. 91 453 (2017)ADSCrossRefGoogle Scholar
  38. [38]
    K Jamshidi-Ghaleh, F Karami-Garehgeshlagi and A A Mazloom Phys. Plasmas 22 103507 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • Zheng Li
    • 1
  • Zhou Ge
    • 1
  • Xue-Yan Zhang
    • 1
  • Zheng-Yue Hu
    • 1
  • Dan Zhao
    • 2
  • Jian-Wei Wu
    • 1
    Email author
  1. 1.School of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China
  2. 2.State Key Laboratory on Integrated OptoelectronicsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations