Advertisement

Magnetic field effect on the electron transport through a spherical quantum dot

  • M. K. Shamer
Original Paper
  • 3 Downloads

Abstract

The influence of magnetic field on the electron transport through a quantum dot embedded between two normal (non-magnetic) leads has been studied. The energy levels of the quantum dot, the occupation numbers, the broadening, the correlation energy and linear conductance have been calculated as a function of gate voltage. The related functions which are spin-dependent have been solved self-consistently. The transport through a quantum dot for weak and strong coupling regimes has been investigated. The calculations have been performed with and without a constant bias voltage, which was applied to the right lead.

Keywords

Anderson model Quantum dot Magnetic field 

PACS Nos.

71.27.+a 73.21.La 73.23.-b 

References

  1. [1]
    T K Ng and P A Lee Phys. Rev. Lett. 61 1768 (1988)ADSCrossRefGoogle Scholar
  2. [2]
    L I Glazman and M E Raikh JETP Lett. 47 452 (1988)ADSGoogle Scholar
  3. [3]
    A Kawabata J. Phys. Soc. Jpn. 60 3222 (1991)ADSCrossRefGoogle Scholar
  4. [4]
    D C Ralph and R A Buhman Phys. Rev. Lett. 72 3401 (1994)ADSCrossRefGoogle Scholar
  5. [5]
    D Goldhaber-Gordon, H Shtrikman, D Mahalu, D Abusch- Magder, U Meirav and M A Kastner Nature 391 156 (1998)Google Scholar
  6. [6]
    S M Cronenwett, T H Oosterkamp and L P Kouwenhoven Science 281 540 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    D Goldhaber-Gordon, J Gores, M A Kastner, H Shtrikman, D Mahalu and U Meirav Phys. Rev. Lett. 81 5225 (1998)ADSCrossRefGoogle Scholar
  8. [8]
    S Hersheld, J H Davies and J W Wilkins Phys. Rev. Lett. 67 3720 (1991)ADSCrossRefGoogle Scholar
  9. [9]
    S Hersheld, J H Davies and J W Wilkins Phys. Rev. B 46 7046 (1992)ADSCrossRefGoogle Scholar
  10. [10]
    N Sivan and N S Wingreen Phys. Rev. B 54 11622 (1996)ADSCrossRefGoogle Scholar
  11. [11]
    A Levy Yeyati, A Martin-Rodero and F Flores Phys. Rev. Lett. 71 2991 (1993)ADSCrossRefGoogle Scholar
  12. [12]
    T K Ng Phys. Rev. Lett. 70 3635 (1993)ADSCrossRefGoogle Scholar
  13. [13]
    Y Meir, N S Wingreen and P A Lee Phys. Rev. Lett. 70 2601 (1993)ADSCrossRefGoogle Scholar
  14. [14]
    N S Wingreen and Y Meir Phys. Rev. B 49 11040 (1994)ADSCrossRefGoogle Scholar
  15. [15]
    T Inoshita, Y Kuramoto and H Sakaki Superlattice Microstruct. 22 75 (1997)ADSCrossRefGoogle Scholar
  16. [16]
    A Oguri, H Ishii and T Saso Phys. Rev. B 51 4715 (1995)ADSCrossRefGoogle Scholar
  17. [17]
    W Izumida, O Sakai and Y Shimizu J. Phys. Soc. Jpn. 67 2444 (1998)ADSCrossRefGoogle Scholar
  18. [18]
    P Fulde, J Keller, and G Zwicknagel Solid State Phys . 41 1 (1988)CrossRefGoogle Scholar
  19. [19]
    N Sivan and N S Wingreen Phys. Rev. B 54 11622 (1996)ADSCrossRefGoogle Scholar
  20. [20]
    P Nozieres J. Low Temp. Phys. 17 31 (1974)ADSCrossRefGoogle Scholar
  21. [21]
    I Aleiner, P Brouwer, and L Glazman Phys. Rep. 358 309 (2009)ADSCrossRefGoogle Scholar
  22. [22]
    P W Anderson Phys. Rev. 124 41 (1961)ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A J Pointon An Introduction to Statistical Physics for Students (London: Longman) (1967)Google Scholar
  24. [24]
    K Yamada Electron Correlation in Metals (New York: Cambridge University Press) (2004)CrossRefGoogle Scholar
  25. [25]
    L E Brus Appl. Phys. A 53 465 (1991)ADSCrossRefGoogle Scholar
  26. [26]
    C Delerue, M Lannoo Nanostructures Theory and Modelling (Berlin: Springer) (2004)Google Scholar
  27. [27]
    A T da Cunha Lima, E V Anda Microelectron. J. 34 337 (2003)CrossRefGoogle Scholar
  28. [28]
    R D Al-Kaffaaji MSc Thesis (Basrah University, College of Education-Physics Department Iraq) (2006)Google Scholar
  29. [29]
    K Yosida Theory of Magnetism Solid State Science (Berlin: Springer) (1998)Google Scholar
  30. [30]
    M A Ibraheem MSc Thesis (Basrah University, College of Education, Physics Department Iraq) (1990)Google Scholar
  31. [31]
    N E Bickers Rev. Mod. Phys. 59 845 (1987)ADSCrossRefGoogle Scholar
  32. [32]
    B Kjollerstrm, D J Scalpino and J R Schreffer, Phys. Rev. 148 665 (1966)ADSCrossRefGoogle Scholar
  33. [33]
    Q A Wang, Chaos Solitons Fractals 19 639 (2004)ADSCrossRefGoogle Scholar
  34. [34]
    Q A Wang Entropy 5 220 (2003)ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Q A Wang, L Nivaren, A Le Mehaute, M Pezeril Europhys. Lett. 65 606 (2004)ADSCrossRefGoogle Scholar
  36. [36]
    R Swirkowicz, M Wilczynsk and J Barnas, Czechoslov. J. Phys. 54 D616 (2004)CrossRefGoogle Scholar
  37. [37]
    Y Meir, N S Wingreen Phys. Rev. Lett. 86 2512 (1992)ADSCrossRefGoogle Scholar
  38. [38]
    J Merino and O Gannarsson Phys. Rev. B 69 115404 (2004)ADSCrossRefGoogle Scholar
  39. [39]
    Kim T S and Hershifield S Phys. Rev. Lett. 88 136601 (2002)ADSCrossRefGoogle Scholar
  40. [40]
    K Yamada Prog. Theor. Phys. 53 970 (1975)ADSCrossRefGoogle Scholar
  41. [41]
    P Stefański Phys. Rev. B 77 125331 (2008)ADSCrossRefGoogle Scholar
  42. [42]
    P Stefański Acta Physica Pol. A 115 92 (2009)CrossRefGoogle Scholar
  43. [43]
    V M Apel, M A Davidovich, E V Anda, C A Busser and G Chiappe Microelectron. J. 34 729 (2003)CrossRefGoogle Scholar
  44. [44]
    C A Busser, E V Anda, M A Davidovich and G Chiappe J. Magn. Magn. Mater. 226–230 121 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BasrahBasrahIraq

Personalised recommendations