Advertisement

Structural, electronic, magnetic and thermodynamic properties of LaFeSi, GdFeSi and TbFeSi nano-layers using first-principles calculations

  • Shahrzad Talakesh
  • Zahra Nourbakhsh
Original paper

Abstract

Our previous study of XFeSi (X = La, Gd, Tb) bulks shows that Fe atom has negligible contribution to the magnetic properties of these compounds. In this paper, the contribution of Fe atom to the magnetic properties of XFeSi (X = La, Gd, Tb) nano-layers is investigated. The calculated results are performed based on the density functional theory. The exchange–correlation potential is calculated using generalized gradient approximation and generalized gradient approximation plus Hubbard parameter. The structural, electronic and magnetic properties of XFeSi (X = La, Gd, Tb) nano-layers are investigated in the presence of spin–orbit coupling. The calculated results are compared with the corresponding results of their bulks. Furthermore, the thermodynamic properties of these nano-layers are investigated using the quasi-harmonic Debye model. The bulk modulus, Debye temperature, specific heat at constant pressure and volume and thermal expansion coefficient of these nano-layers are calculated and compared with the corresponding results of their bulks.

Keywords

Density functional theory XFeSi nano-layers Electron density of states Thermodynamic properties 

PACS Nos.

73.20.At 75.70.Ak 68.35.Md 61.46.−w 

References

  1. [1]
    R Welter, G Venturini and B Malaman J. Alloys Compd. 189 49 (1992)CrossRefGoogle Scholar
  2. [2]
    X B Liua and Z Altounian J. Appl. Phys. 107 09E103 (2010)CrossRefGoogle Scholar
  3. [3]
    M Napoletano, F Canepa, P Manfrinetti and F Merlo J. Mater. Chem. 10 1663 (2000)CrossRefGoogle Scholar
  4. [4]
    H Zhang, et al. Appl. Phys. Lett. 103 202412 (2013)ADSCrossRefGoogle Scholar
  5. [5]
    S Talakesh and Z Nourbakhsh J. Supercond. Nov. Magn. 30 2143 (2017)CrossRefGoogle Scholar
  6. [6]
    G K H Madsen and P Novak Euro Phys. Lett. 69 777 (2005)ADSCrossRefGoogle Scholar
  7. [7]
    G Madsen and P Novak in WIEN2k-Text Book (2007)Google Scholar
  8. [8]
    W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)ADSCrossRefGoogle Scholar
  9. [9]
    P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k (An augmented plane wave plus local orbitals program for calculating crystal properties) (Vienna: University of Technology) (2014)Google Scholar
  10. [10]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  11. [11]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 78 1396 (1997)ADSCrossRefGoogle Scholar
  12. [12]
    V I Anisimov, F Aryasetiawan and A Lichtenstein J. Phys. Condens. Matter 9 767 (1997)ADSCrossRefGoogle Scholar
  13. [13]
    M A Blanco, E Francisco and V Luana Comput. Phys. Commun. 158 57 (2004)ADSCrossRefGoogle Scholar
  14. [14]
    C Toher, et al. Phys. Rev. B90 174107 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    A Otero-de-la-Roza, D Abbasi-Perez and V C Luaña Comput. Phys. Commun. 182 2232 (2011)ADSCrossRefGoogle Scholar
  16. [16]
    M A Blanco, A M N Pendás, E Francisco, J M Recio and R Franco J. Mol. Struct. (Theochem.) 368 245 (1996)Google Scholar
  17. [17]
    A Bentouaf and E Hassan J. Mag. Mag. Mater. 381 65 (2015)ADSCrossRefGoogle Scholar
  18. [18]
    P Debye Ann. Phys. 39 789 (1912)CrossRefGoogle Scholar
  19. [19]
    A T Petit and P L Dulong Ann. Chim. Phys. 10 395 (1819)Google Scholar
  20. [20]
    O Yeheskel, R Chaim, Z J Shen and M Nygren J. Mater. Res. 20 719 (2005)ADSCrossRefGoogle Scholar
  21. [21]
    H Couvy, J H Chen and V Drozd, Phys. Chem. Miner. 37 343 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesUniversity of IsfahanIsfahanIran

Personalised recommendations