Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 487–494 | Cite as

Evolution of structural and morphological characteristics of MoS2 thin films with nitrogen doping

  • Mahnoosh Ardahe
  • Mohammad Reza HantehzadehEmail author
  • Mahmood Ghoranneviss
Original Paper
  • 37 Downloads

Abstract

The two-dimensional MoS2 coatings with incomplete head triangles, triangular stars and six-blade stars domain shape have been grown by the CVD method on SiO2/Si and Si substrates and then doped with nitrogen. The shape of MoS2 domains showed remarkable changes after N2 doping. Doping dramatically changed the physical properties of MoS2 coatings. An accurate study was carried out on the prepared MoS2 thin films using optical microscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. The X-ray spectrum showed well-defined MoS2 coatings with a strong (103) preferred orientation of a typical hexagonal structure. There were no changes in crystallographic orientations after nitrogen doping, while the peak intensity declined. Raman spectroscopy specified that MoS2 multilayer was proved by Raman frequency difference between two characteristic modes (E 2g 1 and A1g). The position and intensity of Raman modes exhibited sensitivity to nitrogen doping. The AFM results indicated topography and roughness variations with nitrogen doping.

Keywords

Molybdenum disulfide Two-dimensional materials Chemical vapor deposition Raman spectra Atomic force microscopy 

PACS Nos.

71.55.Ak 

Notes

Acknowledgements

We thank to the Department of Physics Science and Research Branch Islamic Azad University, Tehran, Iran. This study was not funded. The authors declare that they have no conflict of interest.

References

  1. [1]
    G Eda, H Yamaguchi, D Voiry, T Fujita, M Chen and M Chhowalla Nano Lett. 11 5111 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    A Splendiani, L Sun, Y Zhang, T Li, J Kim, C Y Chim, G Galli and F Wang Nano Lett. 10 1271 (2010)ADSCrossRefGoogle Scholar
  3. [3]
    M Fontana, T Deppe, A K Boyd, M Rinzan, AY Liu, M Paranjape and P Barbara Sci. Rep. 3 1634 (2013)ADSCrossRefGoogle Scholar
  4. [4]
    H Zeng and X Cui Chem. Soc. Rev. 44 2629 (2015)CrossRefGoogle Scholar
  5. [5]
    K F Mak, C Lee, J Hone, J Shan and T F Heinz Phys. Rev. Lett. 105 136805 (2010)ADSCrossRefGoogle Scholar
  6. [6]
    Q H Wang, K Kalantar-Zadeh, A Kis, J N Coleman and M S Strano Nat. Nanotechnol. 7 699 (2012)ADSCrossRefGoogle Scholar
  7. [7]
    J Ribeiro-Soares, R M Almeida, E B Barros, P T Araujo, M S Dresselhaus, L G Cançado and A Jorio Phys. Rev. B90 115438 (2014)ADSCrossRefGoogle Scholar
  8. [8]
    B Chakraborty, H S S R Matte, A K Sood and C N R.Rao J. Raman Spectrosc. 44 92 (2013)ADSCrossRefGoogle Scholar
  9. [9]
    R Lv, J A. Robinson, R E Schaak, D Sun, Y Sun, T E Mallouk and M Terrones Acc. Chem. Res. 48 56 (2015)CrossRefGoogle Scholar
  10. [10]
    B Radisavljevic, M B Whitwick and A Kis Appl. Phys. Lett. 101 043103 (2012)ADSCrossRefGoogle Scholar
  11. [11]
    M Y Li, C H Chen, Y Shi and L J Li Mater. Today 19 322 (2016)CrossRefGoogle Scholar
  12. [12]
    X Cao, C Tan, X Zhang, W Zhao and H Zhang, Adv. Mater. 28 6167 (2016)CrossRefGoogle Scholar
  13. [13]
    H Li, Z Yin, Q He, H Li, X Huang, G Lu, D W H Fam, A I Y Tok, Q Zhang and H Zhang Small 8 63 (2012)CrossRefGoogle Scholar
  14. [14]
    Q He, Z Zeng, Z Yin, H Li, S Wu, X Huang and H Zhang Small 8 2994 (2012)CrossRefGoogle Scholar
  15. [15]
    A L Friedman, F K Perkins, E Cobas, G G Jernigan, P M Campbell, A T Hanbicki and B T Jonker Solid-State Electron. 101 2 (2014)ADSCrossRefGoogle Scholar
  16. [16]
    Y Yoon, K Ganapathi and S Salahuddin Nano Lett. 11 3768 (2011)ADSCrossRefGoogle Scholar
  17. [17]
    H Wang, L Yu, Y H Lee, Y Shi, A Hsu, M L Chin, L J Li, M Dubey, J Kong and T Palacios Nano Lett. 12 4674 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    J Pu, Y Yomogida, K K Liu, L J Li, Y Iwasa and T Takenobu Nano Lett. 12 4013 (2012)ADSCrossRefGoogle Scholar
  19. [19]
    I Bilgin, F Liu, A Vargas, A Winchester, M K L Man, M Upmanyu, K M Dani, G Gupta, S Talapatra, A D Mohite and S Kar ACS Nano 9 8822(2015)CrossRefGoogle Scholar
  20. [20]
    Y J Zhan, Z Liu, S Najmaei, P M Ajayan and J Lou Small 8 966 (2012)CrossRefGoogle Scholar
  21. [21]
    Y C Lin, W J Zhang, J K Huang, K K Liu, Y H Lee, C T Liang, C W Chu and L J Li Nanoscale 4 6637 (2012)ADSCrossRefGoogle Scholar
  22. [22]
    D Qiu, D U Lee, S W Pak, E K Kim Thin Solid Films 587 47 (2015)ADSCrossRefGoogle Scholar
  23. [23]
    S Qin, W Lei, D Liu and Y Chen Sci. Rep. 4 7582 (2014)ADSCrossRefGoogle Scholar
  24. [24]
    W Zhou, D Hou, Y Sang, S Yao, J Zhou, G Li, L Li, H Liu and S Chen J. Mater. Chem. A2 11358 (2014)CrossRefGoogle Scholar
  25. [25]
    R Li, L Yang, T Xiong, Y Wu, L Cao, D Yuan and W Zhou J. Power Sources 356 133 (2017)ADSCrossRefGoogle Scholar
  26. [26]
    S Wang, Y Rong, Y Fan, M Pacios, H Bhaskaran, K He and J H Warner Chem. Mater. 26 6371 (2014)CrossRefGoogle Scholar
  27. [27]
    H Dong, C Liu, H Ye, L Hu, B Fugetsu, W Dai, Y Cao, X Qi, H Lu and X Zhang Sci. Rep. 5 17542 (2015)ADSCrossRefGoogle Scholar
  28. [28]
    J L Verble, T J Wieting and P R Reed Solid State Commun. 11 941 (1972)ADSCrossRefGoogle Scholar
  29. [29]
    J Aizenberg, A J Black and G M Whitesides Nature 398 495 (1999)ADSCrossRefGoogle Scholar
  30. [30]
    Y Zhao, X Luo, H Li, J Zhang, P T Araujo, C K Gan, J Wu, H Zhang, S Y Quek, M S Dresselhaus and Q Xiong Nano Lett. 13 1007 (2013)ADSCrossRefGoogle Scholar
  31. [31]
    C Lee, H Yan, L E Brus, T F Heinz, J Hone and S Ryu ACS Nano 4 2695 (2010)CrossRefGoogle Scholar
  32. [32]
    P R Wolde and D T Frenkel Science 277 1975 (1997)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • Mahnoosh Ardahe
    • 1
  • Mohammad Reza Hantehzadeh
    • 1
    Email author
  • Mahmood Ghoranneviss
    • 1
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations