Advertisement

Indian Journal of Physics

, Volume 93, Issue 4, pp 467–474 | Cite as

Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer

  • Omer GulluEmail author
  • Murat Cankaya
  • V. Rajagopal ReddyEmail author
Original Paper
  • 75 Downloads

Abstract

In the present work, the surface morphology, structural and optical features of graphene oxide (GO) films are investigated. The Al/GO/n-InP MIS diode is formed by depositing GO layer on n-InP wafer for the barrier enhancement. Interfacial properties of the MIS diode with GO interlayer are extracted from current–voltage (IV) measurement. The simple diode parameters such as barrier height and ideality factor are extracted from IV plots, and the values are compared with those of conventional Al/n-InP MS contact. The value of barrier height (BH) for the Al/GO/n-InP contact is found as 0.85 eV. The BH value of 0.85 eV of the Al/GO/n-InP MIS structure is as high as around 100% compared to the value of 0.43 eV of the Al/n-InP reference contacts. We have showed that the value of 0.85 eV is one of the highest values presented for reference contacts with an interlayer.

Keywords

Graphene oxide Thin films Band gap MIS diode X-ray diffraction 

PACS Nos

73.22.Pr 73.40.Sx 73.30. + y 72.20.-i 

Notes

Acknowledgements

This study is partly supported by Republic of Turkey Prime Ministry State Planning organization (DPT) (Project Number: 2010K120610, Batman University Central Research Laboratory).

References

  1. [1]
    Y Zhu, S Murali, W Cai, X Li, J W Suk, J R Potts and R S Ruoff Adv. Mater. 22 3906 (2010)CrossRefGoogle Scholar
  2. [2]
    C Chung, Y K Kim, D Shin, S R Ryoo, B H Hong and D H Min Acc. Chem. Res. 46 2211 (2013)CrossRefGoogle Scholar
  3. [3]
    A Pérez del Pino, A Datcu and E Gyorg Ceram. Int. 42(6) 7278 (2016)CrossRefGoogle Scholar
  4. [4]
    D T Phan and G S Chung Sens. Actuator B Chem. 220 1050 (2015)CrossRefGoogle Scholar
  5. [5]
    S Rani, M Kumar, R Kumar, D Kumar, S Sharma and G Singh Mater. Res. Bull. 60 143 (2014)CrossRefGoogle Scholar
  6. [6]
    S Rani, M Kumar, D Kumar and S Sharma Thin Solid Films 585 13 (2015)ADSCrossRefGoogle Scholar
  7. [7]
    D Tomer, S Rajput, L J Hudy, C H Li and L Li Nanotechnology 26 215702 (2015) ADSCrossRefGoogle Scholar
  8. [8]
    X Li, H Zhu, K Wang, A Cao, J Wei, C Li, Y Jia, Z Li, X Li and D Wu Adv. Mater. 22 2743 (2010)CrossRefGoogle Scholar
  9. [9]
    L J Larsen, C J Shearer, A V Ellis and J G Shapter RSC Adv. 5 38851 (2015)CrossRefGoogle Scholar
  10. [10]
    Z Tang, Q Liu, I Khatri, R Ishikawa, K Ueno and H Shirai Phys. Status Solidi C 9 2075 (2012)ADSCrossRefGoogle Scholar
  11. [11]
    Z Zhang, T X Cui, RT Lv, H W Zhu, K L Wang, D Wu and F Kang J. Nanometer. 2014 359305 (2014)Google Scholar
  12. [12]
    K Ihm, J T Lim, K J Lee, J W Kwon, T H Kang, S Chung, S Bae, J H Kim, B H Hong and G Y Yeom Appl. Phys. Lett. 97 032113 (2010)ADSCrossRefGoogle Scholar
  13. [13]
    X Z Zhang, C Xie, J S Jie, X W Zhang, Y Wu and W J Zhang J. Mater. Chem. A 1 6593 (2013)CrossRefGoogle Scholar
  14. [14]
    K F Mak, M Y Sfeir, Y Wu, C H Lui, J A Misewich and T F Heinz Phys. Rev. Lett. 101 196405 (2008)ADSCrossRefGoogle Scholar
  15. [15]
    [15] S Tongay, T Schumann and AF Hebard (2009) Appl. Phys. Lett. 95 222103ADSCrossRefGoogle Scholar
  16. [16]
    C C Chen, M Aykol, C C Chang, A F J Levi and S B Cronin Nano Lett. 11 1863 (2011)ADSCrossRefGoogle Scholar
  17. [17]
    L Lancellotti, T Polichetti, F Ricciardella, O Tari, S Gnanapragasam, S Daliento and G Di Francia Thin Solid Films 522 390 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    D T Phan, R K Gupta, G S Chung, A A Al-Ghamdi, O A Al-Hartomy, F El-Tantawy and F Yakuphanoglu Sol. Energy 86 2961 (2012)ADSCrossRefGoogle Scholar
  19. [19]
    E Hokelek and G Y Robinson (1982) Appl. Phys. Lett. 40 426 (1982)ADSCrossRefGoogle Scholar
  20. [20]
    H Çetin and E Ayyıldız Appl. Surf. Sci. 253 5961 (2007)CrossRefGoogle Scholar
  21. [21]
    H Hasegawa Solid-State Electron. 41 1441 (1997)ADSCrossRefGoogle Scholar
  22. [22]
    [22] H Cetin, E Ayyildiz and A Turut J. Vac. Sci. Technol. B 23 2436 (2005)CrossRefGoogle Scholar
  23. [23]
    R K Gupta and R A Singh J. Polym. Res. 11 269 (2004)CrossRefGoogle Scholar
  24. [24]
    S Aydogan, M Saglam and A Turut Vacuum 77 269 (2005)ADSCrossRefGoogle Scholar
  25. [25]
    S Aydogan and M Saglam Physica E 46 38 (2012)ADSCrossRefGoogle Scholar
  26. [26]
    O Gullu, S Aydogan and A Turut Solid State Commun. 152 381 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    V Rajagopal Reddy, M S P Reddy, A A Kumar and C J Choi Thin Solid Films 520 5715 (2012)ADSCrossRefGoogle Scholar
  28. [28]
    V Rajagopal Reddy, A Umapathi and L D Rao Curr. Appl. Phys. 13 1604 (2013)ADSCrossRefGoogle Scholar
  29. [29]
    V Rajagopal Reddy (2014) Thin Solid Films 556 300ADSCrossRefGoogle Scholar
  30. [30]
    A Umapathi and V Rajagopal Reddy Microelectron. Eng. 114 31 (2014)Google Scholar
  31. [31]
    O Gullu Microelectron. Eng. 87 648 (2010)CrossRefGoogle Scholar
  32. [32]
    O Gullu, S Aydogan and A Turut Thin Solid Films 520 1944 (2012)ADSCrossRefGoogle Scholar
  33. [33]
    O Gullu and A Turut J. Vac. Sci. Technol. B 28(3) 466 (2010)CrossRefGoogle Scholar
  34. [34]
    W S Hummers and R E Offeman J. Am. Chem. Soc. 80 1339 (1958)CrossRefGoogle Scholar
  35. [35]
    Z F Liu, Q Liu, X Y Zhang, Y Huang, Y F Ma, S G Yin and Y S Chen Adv. Mater. 20 3924 (2008)CrossRefGoogle Scholar
  36. [36]
    C P Liu, Y Y Hui, Z H. Chen, J G Ren, Y Zhou, L Tang, Y B Tang, J A Zapien and S P Lau (2013) RSC Adv. 3 17918 (2013)CrossRefGoogle Scholar
  37. [37]
    I Karteri, S Karatas and F Yakuphanoglu Appl. Surf. Sci. 318 74 (2014)ADSCrossRefGoogle Scholar
  38. [38]
    F T Thema, M J Moloto, E D Dikio, N N Nyangiwe, L Kotsedi, M Maaza and M Khenfouch J. Chem. 2013 150536 (2013)CrossRefGoogle Scholar
  39. [39]
    X Lv, Y Huang, Z Liu, J G Tian, Y Wang, Y F Ma, J J Liang, S P Fu, X J Wan and Y S Chen Small 5 1682 (2009)CrossRefGoogle Scholar
  40. [40]
    M A Velasco-Soto, S A Perez-Garcia, J Alvarez-Quintana, Y Cao, L Nyborg and L Licea-Jimenez Carbon 93 967 (2015)CrossRefGoogle Scholar
  41. [41]
    [41] D C Marcano, D V Kosynkin, J M Berlin, A Sinitskii, Z Z Sun, A Slesarev, L B Alemany, W Lu and J M Tour ACS Nano 4 4806 (2010)CrossRefGoogle Scholar
  42. [42]
    M Singh, A Yadav, S Kumar and P Agarwal Appl. Surf. Sci. 326 236 (2015)ADSCrossRefGoogle Scholar
  43. [43]
    F A Chowdhury, T Morisaki, J Otsuki and M S Alam Appl. Surf. Sci. 259 460 (2012)ADSCrossRefGoogle Scholar
  44. [44]
    A Mathkar, D Tozier, P Cox, P Ong, C Galande, K Balakrishnan, A L M Reddy and P M Ajayan J. Phys. Chem. Lett. 3 986 (2012)CrossRefGoogle Scholar
  45. [45]
    T T Wu and J M Ting Surf. Coat. Technol. 231 487 (2013)CrossRefGoogle Scholar
  46. [46]
    I K Moon, J Lee, R S Ruoff and H Lee Nat. Commun. 1 73 (2010)ADSCrossRefGoogle Scholar
  47. [47]
    S Bykkam, V R Kalagadda, S C Chidurala and T Thunugunta Int. J. Adv. Biotechnol. Res 4 1005 (2013)Google Scholar
  48. [48]
    G H Xu, N Wang, J Y Wei, L L Lv, J Zhang, Z Chen and Q Xu Ind. Eng. Chem. Res. 51 14390 (2012)CrossRefGoogle Scholar
  49. [49]
    R K Gupta, Z A Al-ahmed and F Yakuphanoglu Mater. Lett. 112 75 (2013)CrossRefGoogle Scholar
  50. [50]
    [50] H Feng, Y Li and J Li RSC Adv. 2 6988 (2012)CrossRefGoogle Scholar
  51. [51]
    B S Yilbas, A Ibrahim, H Ali, M Khaled and T Laoui Appl. Surf. Sci. 442 213 (2018)ADSCrossRefGoogle Scholar
  52. [52]
    E H Rhoderick and R H Williams MetalSemiconductor Contacts, 2nd edn. (Oxford: Clarendon) (1988)Google Scholar
  53. [53]
    S M Sze Physics of Semiconductor Devices, 2nd edn. (New York: Wiley) (1981)Google Scholar
  54. [54]
    F E Jones, B P Wood, J A Myers, C H Daniels and M C Lonergan J. Appl. Phys. 86 6431 (1999)ADSCrossRefGoogle Scholar
  55. [55]
    Y Sakamoto, T Sugino, T Miyazaki and J Shirafuji Electron. Lett. 31 1104 (1995)CrossRefGoogle Scholar
  56. [56]
    A R V Roberts and D A Evans Appl. Phys. Lett. 86 072105 (2005)ADSCrossRefGoogle Scholar
  57. [57]
    M Cakar, N Yildirim, S Karatas, C Temirci and A Turut J. Appl. Phys. 100 074505 (2006)ADSCrossRefGoogle Scholar
  58. [58]
    F Yakuphanoglu, M Kandaz and B F Senkal Thin Solid Films 516 8793 (2008)ADSCrossRefGoogle Scholar
  59. [59]
    F E Jones, C D Hafer, B P Wood, R G Danner and M C Lonergan J. Appl. Phys. 90 1001 (2001)ADSCrossRefGoogle Scholar
  60. [60]
    R K Gupta and R A Singh Mater. Chem. Phys. 86 279 (2004)CrossRefGoogle Scholar
  61. [61]
    O Gullu, S Aydogan and A Turut Microelectron. Eng. 85 1647 (2008)CrossRefGoogle Scholar
  62. [62]
    S K Cheung and N W Cheung Appl. Phys. Lett. 49 85 (1986)ADSCrossRefGoogle Scholar
  63. [63]
    H Norde J. Appl. Phys. 50 5052 (1979)ADSCrossRefGoogle Scholar
  64. [64]
    O Gullu, S Aydogan and A Turut Phys. Scr. 79 035802 (2009)ADSCrossRefGoogle Scholar
  65. [65]
    H C Card and E H Rhoderick J. Phys. D Appl. Phys. 4 1589 (1971)ADSCrossRefGoogle Scholar
  66. [66]
    O Gullu and A Turut Acta Phys. Pol. A 128 383 (2015)CrossRefGoogle Scholar
  67. [67]
    O Gullu, T Kilicoglu and A Turut J. Phys. Chem. Solids 71 351 (2010)ADSCrossRefGoogle Scholar
  68. [68]
    I Y Erdogan and O Gullu Appl. Surf. Sci. 256 4185 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Faculty of Sciences and ArtsUniversity of BatmanBatmanTurkey
  2. 2.Department of Biochemistry, Faculty of Sciences and ArtsUniversity of ErzincanErzincanTurkey
  3. 3.Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations