Advertisement

Indian Journal of Physics

, Volume 93, Issue 2, pp 175–183 | Cite as

Influence of Gamma irradiation on the structural and optical characteristics of Li ion-doped PVA/PVP solid polymer electrolytes

  • A. M. IsmailEmail author
  • M. I. Mohammed
  • E. G. El-Metwally
Original Paper
  • 75 Downloads

Abstract

Lithium ions-doped polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) films were prepared by solution casting technique and exposed to 100 kGy gamma radiation. The structural modifications in the samples before and after irradiation were studied using X-ray diffraction XRD and UV–Vis spectroscopy. The results indicated that absorbance \( A\,(\lambda ) \) and absorption index (k) increased, while semicrystalline nature of the blend decreased due to the addition of Li2SO4 and irradiation. The optical band gap \( E_{\text{g}}^{\text{opt}} \) of the composites showed significant decrease from 2.98 to 2.196 eV by adding Li2SO4 and from 2.83 to 2.08 eV after irradiation due to cross-linking. The Tauc’s relation indicated that allowed transitions are indirect for both irradiated and unirradiated samples. The Urbach energy (\( E_{\text{u}} \)) increased with increasing Li ion content and exposure to γ irradiation. The dependence of dielectric permittivity \( \varepsilon_{1} \), dielectric loss \( \varepsilon_{2} \) and optical conductivity \( \sigma_{opt} \) on photon energy \( h\nu \) was also studied.

Keywords

Polymer blend Gamma irradiation XRD UV/Vis. Optical energy gap 

PACS Nos.

42.70.Jk 78.20.-e 78.20.Ci 

References

  1. [1]
    M H Buraidah, L P Teo, C M A Yong, S Shah and A K Arof Opt. Mater. 57 202 (2016)ADSGoogle Scholar
  2. [2]
    H Ragab Phys. B 406 3759 (2011)ADSGoogle Scholar
  3. [3]
    B Chaudhuri, B Mondal, S K Ray and S C Sarkar Coll. Surf. B 143 71 (2016)Google Scholar
  4. [4]
    S B Aziz, M A Rasheed, A M Hussein and H M Ahmed Mater. Sci. Semicond. Process. 71 197 (2017)Google Scholar
  5. [5]
    C V S Reddy, X Han, Q-Y Zhu, L-Q Mai and W Chen Microelect. Eng. 83 281 (2006)Google Scholar
  6. [6]
    B Gündüz Optik 126 4566 (2015)Google Scholar
  7. [7]
    F M Ali, R M Kershi, M A Sayed and Y M AbouDeif Physica B: Cond. Mat. 538 160 (2018)ADSGoogle Scholar
  8. [8]
    A M Abdelghany, E M Abdelrazek, S I Badr and M A Morsi Mater. & des. 97 532 (2016)Google Scholar
  9. [9]
    M F Eissa, M A Kaid and N A Kamel J. App. Polym. Sci. 125 3682 (2012)Google Scholar
  10. [10]
    E M Abdelrazek, I S Elashmawi, A El-khodary and A Yassin Curr. App. Phys. 10 607 (2010)ADSGoogle Scholar
  11. [11]
    I S Elashmawi and H E Abdel Baieth Curr. App. Phys. 12 141 (2012)ADSGoogle Scholar
  12. [12]
    B Shanthi and S Muruganand Int. J. Sci. Eng. App. Sci. 8 348 (2015)Google Scholar
  13. [13]
    A Tawansi, A H Oraby, E Ahmed, E M Abdelrazek and M Abdelaziz J. App. Polym. Sci. 70 1759 (1998)Google Scholar
  14. [14]
    C Rishi Pal, S Mahendia, A K Tomar and S Kumar J. All. Comp. 538 212 (2012)Google Scholar
  15. [15]
    S Choudhary and R Sengwa Ind. J Phys. 85 1591 (2011)Google Scholar
  16. [16]
    A M El Sayed Nuc. Inst. Meth. Phys. Res. B 321 41 (2014)ADSGoogle Scholar
  17. [17]
    V Krishnakumar and G Shanmugam Ionics 18 403 (2012)Google Scholar
  18. [18]
    N M Mott and E A Davis Electronic Process in Non-Crystalline Materials (Oxford: Clarendon) (1979)Google Scholar
  19. [19]
    S Eid, S Ebraheem and N M Abdel-Kader Open J. Polym. Chem. 4 21 (2014)Google Scholar
  20. [20]
    A M Abdelghany, E M Abdelrazek and D S Rashad Spectrochim. Acta A 130 302 (2014)Google Scholar
  21. [21]
    Venkatachalam and Sridevi Spectroscopy of Polymer Nanocomposites (William Andrew: App. Sci. Pub.) (2016)Google Scholar
  22. [22]
    E Davis and N Mott Phil. Mag. 22 903 (1970)ADSGoogle Scholar
  23. [23]
    Y Lou, M Liu, X Miao, L Zhang and X Wang Polym. Compos. 31 1184 (2010)Google Scholar
  24. [24]
    A M El-Sayed, S El-Sayed, W M Morsi, S Mahrous and A Hassen Polym. Compos. 35 1842 (2014)Google Scholar
  25. [25]
    N L Mathakari Nuc. Inst. Meth. Phys. Res. B 266 3075 (2008)ADSGoogle Scholar
  26. [26]
    M Hirokazu, F Kida, K Yamada, K Tsuchiya and H Hase Opt. Mat. 55 109 (2016)Google Scholar
  27. [27]
    T J Alwan Turk. J. Phys. 36 377 (2012)Google Scholar
  28. [28]
    A M Shehap, K A Elsayed and D S Akil Physica E 86 1 (2017)ADSGoogle Scholar
  29. [29]
    S Raghuvanshi, B Ahmad, A Srivastava, J Krishna and M Wahab Nuc. Inst. Meth. Phys. Res. B 271 44 (2012)ADSGoogle Scholar
  30. [30]
    F Urbach, Phys. Rev. 92 1324 (1953)ADSGoogle Scholar
  31. [31]
    A Stoica-Guzun, M Stroescu, F Tache, T Zaharescu and Grosu Nuc. Inst. and Meth. in Phys. Res. B 265 434 (2007)Google Scholar
  32. [32]
    S Y El-Zaiat, H El-Ghandoor and F Sharaf Opt. Laser Tech. 29 117 (1997)ADSGoogle Scholar
  33. [33]
    S Gurinderjeet, M K Gupta, A S Dhaliwal and K S Kahlon J. Alloys and Comp. 623 407 (2015)Google Scholar
  34. [34]
    J I Pankove Optical Processes in Semiconductors, (Dover Publication: New York) (1975)Google Scholar
  35. [35]
    S H Wemple and J Didomenico Phys. Rev. B 3 1338 (1971)ADSGoogle Scholar
  36. [36]
    E M Abdelrazek and H M Ragab Ind. J. Phys. 89 577 (2015)Google Scholar
  37. [37]
    F A Mustafa Phys. Sci. Res. Inter. 1 1 (2013)Google Scholar
  38. [38]
    K P Raj and K Sadayandi Physica B 487 1 (2016)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • A. M. Ismail
    • 1
    Email author
  • M. I. Mohammed
    • 1
  • E. G. El-Metwally
    • 1
  1. 1.Physics Department, Faculty of EducationAin Shams UniversityRoxyEgypt

Personalised recommendations