Advertisement

Indian Journal of Physics

, Volume 93, Issue 2, pp 169–174 | Cite as

Reduced A–B super exchange interaction in Sm3+–Gd3+-doped Mn–Zn ferrites due to high energy gamma irradiation

  • V. Jagadeesha AngadiEmail author
  • Shidaling Matteppanavar
  • N. Maramu
  • P. Mohan Kumar
  • U. Mahaboob Pasha
  • P. R. Deepthi
  • K. PraveenaEmail author
Original Paper
  • 25 Downloads

Abstract

We report the effect of gamma irradiation on structural and magnetic properties of \({\text{Mn}}^{2 + }_{0.4} {\text{Zn}}^{2 + }_{0.6} {\text{Sm}}^{3 + }_{x} {\text{Gd}}^{3 + }_{y} {\text{Fe}}^{3 + }_{2 - (x + y)} {\text{O}}_{4}\) (where x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) ceramics prepared by self-propagating high-temperature synthesis method using glucose and urea as fuels. The synthesized samples are characterized through X-ray diffractometer (XRD) and vibration sample magnetometer at room temperature before and after gamma irradiation. The XRD patterns of before irradiation samples reveal the formation of polycrystalline, mixed spinel cubic structure. The mixed (impurity) phases are identified as Fe2O3, SmFeO3 and GdFeO3, and the amount of these residual phases is comparatively less after gamma irradiation. Lattice parameter is found to be increasing with increasing Sm3+ and Gd3+ concentration is observed after gamma irradiation. This is due to the irradiation of ionizing gamma radiation with the material which gives rise to the production of lattice defect and then the displacing of atoms from their equilibrium position. The magnetic properties reveal that saturation magnetization (Ms), remnant (Mr), remnant ration (Mr/Ms), coercivity (Hc), magneton number (ηB), anisotropy constant (K) have been decreasing with increasing Sm3+ and Gd3+ concentration before and after gamma irradiation. This is due to breaking of ferrimagnetic ordering, surface state pinning and cation inversion of the materials. Hence, our results propose the good radiation stability of the samples when compared to reported material stability in the literature.

Keywords

Mn–Zn ferrites High energy gamma irradiation Crystal structure Magnetic properties 

PACS Nos

71.20.Be 71.20.Eh 72.80.Ga 72.15.Eb 

References

  1. [1]
    M M Eltabey, I A Ali, H E Hassan and M N H Comsan J. Mater. Sci. 46 2294 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    S P Gokov, V T Gritsyna, V I Kasilov, S S Kochetov, Y G Kazarinov Prob. Atom. Sci. Technol. 81 52 (2009)Google Scholar
  3. [3]
    V Jagadeesha Angadi, B Rudraswamy, E Melagiriyappa, Y Shivaraj and S Matteppanavar Indian J. Phys. 90 881 (2016)ADSCrossRefGoogle Scholar
  4. [4]
    V J Angadi, AV Anupama, R Kumar, H K Choudhary, S Matteppanavar, H M Somashekarappa, B Rudraswamy and B Sahoo Mater. Chem. Phys. 199 313 (2017)CrossRefGoogle Scholar
  5. [5]
    V Jagadeesha Angadi, A V Anupama, R Kumar, H M Somashekarappa, S Matteppanavar, B Rudraswamy and B Sahoo Ceram. Int. 43 523 (2017)CrossRefGoogle Scholar
  6. [6]
    V Jagadeesha Angadi, A V Anupama, R Kumar, H M Somashekarappa, K Praveena, B Rudraswamy and B Sahoo, Ceram. Int. l42 15933 (2016)Google Scholar
  7. [7]
    O M Hemeda Phase Trans. 51 87 (1994)CrossRefGoogle Scholar
  8. [8]
    N Z Darwish, O M Hameda and M I Abd El-Ati Appl. Radiat. Isot. 45 445 (1994)CrossRefGoogle Scholar
  9. [9]
    V Jagadeesha Angadi, B Rudraswamy, K Sadana, S Ramanamurthy and K Praveena, J. Alloys Compd. 256 5 (2016)CrossRefGoogle Scholar
  10. [10]
    A Kumar, P S Rana, M S Yadav and R P Pant Ceram. Int. 41 1297 (2015)CrossRefGoogle Scholar
  11. [11]
    P Samolia, L Sacarescu, A I Borhan, D Timpu, M Grigoras, N Lupu, M Zaltariov and V Harabagiu J. Magn. Magn. Mater. 378 92 (2015)ADSCrossRefGoogle Scholar
  12. [12]
    M M Eltabey, W R Agami and H T Mohsen, J. Adv. Res. 5 601 (2014)Google Scholar
  13. [13]
    Z Peng, X Fu, H Ge, Z Fu, C Wang, L Qi and H Miao J. Magn. Magn. Mater. 223 2513 (2011)ADSCrossRefGoogle Scholar
  14. [14]
    R N Panda, J C Shih and T S Chin J. Magn. Magn. Mater. 257 79 (2003)ADSCrossRefGoogle Scholar
  15. [15]
    A B Gadkari, T J Shinde and P N Vasambekar Mater. Charact. 60 1328 (2009)CrossRefGoogle Scholar
  16. [16]
    N Millot, S L Gallet, D Aymes, F Bernard and F Grin J. Eur. Ceram. Soc. 27 921 (2007)CrossRefGoogle Scholar
  17. [17]
    V Jagadeesha Angadi, S P Kubrin, D A Sarychev, S Matteppanavar, B Rudraswamy, H-L Liu and K Praveena J.Magn. Magn. Mater. 441 348 (2017)ADSCrossRefGoogle Scholar
  18. [18]
    V Jagadeesha Angadi, B Rudraswamy, K Sadhana, S Ramana Murthy and K Praveena J. Alloys Compd. 656 5 (2016)CrossRefGoogle Scholar
  19. [19]
    T A S Ferreira, J C Waerenborgh, M H R M Mendonça, M R Nunes and F M Costaa Solid State Sci 5 383 (2003)ADSCrossRefGoogle Scholar
  20. [20]
    D Q Tang, D J Zang and H Ai Chem. Lett. 35 1238 (2006)CrossRefGoogle Scholar
  21. [21]
    M K Shobana, V Rajendran, M Jeyasubramanian and N Suresh Kumar Mater. Lett. 612 2616 (2007)CrossRefGoogle Scholar
  22. [22]
    S Nasir and M Anis-ur-Rehman Phys. Scr. 84 25603 (2011)CrossRefGoogle Scholar
  23. [23]
    V J Angadi, A V Anupama, R Kumar, H K Choudhary, S Matteppanavar, H M Somashekarappa, B Rudraswamy and B Sahoo Mater. Chem. Phys. 199 313 (2017)CrossRefGoogle Scholar
  24. [24]
    R A Young (ed.) The Rietveld Method. International Union of Crystallography. Oxford University Press, 298 (1993)Google Scholar
  25. [25]
    E C Stoner and E P Wohlfarth Philos. Trans. R. Soc. Lond. 240 599 (1948)ADSCrossRefGoogle Scholar
  26. [26]
    B J Madhu, V Jagadeesha Angadi, H Mallikarjuna, S O Manjunatha, B Shruthi and R Madhu Kumar Adv. Mater. Res. 584 299 (2012)CrossRefGoogle Scholar
  27. [27]
    V Jagadeesha Angadi, B Rudraswamy, E Melagiryappa, H M Somashekarappa and H Nagabhushana AIP Conf. Proc. 1591 296 (2014)ADSCrossRefGoogle Scholar
  28. [28]
    A Karim, S E Shirsath, S J Shukla and K M Jadhav Nucl. Instr. Methods Phys Res B 268 2706 (2010)ADSCrossRefGoogle Scholar
  29. [29]
    V G Patil, S E Shirsath, S D More, S J Shukla and K M Jadhav J. Alloys. Compd. 488 199 (2009)CrossRefGoogle Scholar
  30. [30]
    A Karim, S E Shisath, S J Shukla and K M Jadhav Nucl. Instr. Methods Phys. Res. B 268 2706 (2010)ADSCrossRefGoogle Scholar
  31. [31]
    M L Mane, S E Shirsath, V N Dhage and K M Jadhav Nucl. Instr. Methods Phys. Res. B 269 2026 (2011)ADSCrossRefGoogle Scholar
  32. [32]
    S Giri, S Samanta, S Maji, S Ganguli and A Bhumik J. Magn. Magn. Mater. 285 296 (2005)ADSCrossRefGoogle Scholar
  33. [33]
    R Topkaya, A Baykal and A Demir J. Nanoparticle Res. 15 1359 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Material Research Center, School of EngineeringPresidency UniversityBengaluruIndia
  2. 2.Department of Condensed Matter Physics and Material ScienceTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.Department of PhysicsKakatiya Institute of Technology and ScienceWarangalIndia
  4. 4.Department of PhysicsPalamuru UniversityMahbubnagarIndia

Personalised recommendations