Advertisement

Indian Journal of Physics

, Volume 93, Issue 2, pp 147–158 | Cite as

Conductivity and free volume studies on bismuth sulfide/PVA:polypyrrole nanocomposites

  • V Hebbar
  • H B Ravikumar
  • M Nandimath
  • S Masti
  • L M Munirathnamma
  • J Naik
  • R F BhajantriEmail author
Original Paper
  • 58 Downloads

Abstract

The polymer composite films of polyvinylalcohol:polypyrrole blend containing different wt% of bismuth sulfide (Bi2S3) particles are prepared through in situ oxidation followed by solution casting method, where the particles are coated with blend matrix. The XRD studies affirm the enhanced crystallinity of the composites. The variation of crystallite size is measured with the Debye–Scherrer method. The DSC studies are used to investigate the glass transition that occurred in the Bi2S3 particles-filled polymer blend matrix. The AFM and SEM studies illustrated the effect of insertion of metallic sulfide particles on the surface morphology. The addition of bismuth sulfide particles results in the increased mechanical properties of the composite matrix. The electrical conductivity is determined by the Cole–Cole plot fitted using equivalent circuit model, and the conductivity is observed to be enhanced with an increase in filler content due to the enhanced conductive pathways. The variation of o-Ps lifetime, o-Ps intensity, average size of the free volume and fraction of free volume is studied using Tao–Eldrup Model. The obtained free volume parameters are correlated with the electrical, microstructural and thermal properties. The increased interfacial width is illustrated in terms of increased free volume size. The enhanced free volume provides more space for mobility of charge carriers, and hence the conductivity is enhanced.

Keywords

Blend AFM Mechanical properties Conductivity Cole–Cole Free volume 

PACS Nos.

61.10.Nz 66.10.Ed 71.20.Rv 71.60.+z 72.80.Le 78.70.Bj 

Notes

Acknowledgements

One of the authors, Vidyashree Hebbar is thankful to Karnatak University, Dharwad, for awarding UGC-UPE fellowship (KU/Sch/UGC-UPE/2014-15/890). The authors also thank the UGC, New Delhi, for the SAP-CAS Phase-II (F.530/9/CAS-II/2015(SAP-I) for providing research grants, and Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for the research projects (SR/FTP/PS-011/2010), (SB/EMEQ-089/2013) and (SB/EMEQ-213/2014). The authors would like to acknowledge USIC, Karnatak University, Dharwad, for DSC and AFM facilities. The authors would further acknowledge MIT, Manipal, for XRD measurement facility.

References

  1. [1]
    J Liu, Y Luo, Y Wang, Y Deng and X Xie Rsc Adv. 5 96258 (2015)Google Scholar
  2. [2]
    M T Ramesan Polym. - Plast. Technol. Eng. 51 1223 (2012)Google Scholar
  3. [3]
    N Romyen, S Thongyai, P Praserthdam and G A Sotzing J. Mater. Sci. Mater. Electron. 24 2897 (2013)Google Scholar
  4. [4]
    E F De Melo, K G B Alves, S A Junior and C P De Melo J. Mater. Sci. 48 3652 (2013)ADSGoogle Scholar
  5. [5]
    W Yin, H Liu and L H Gan J. Appl. Polym. Sci. 72 95 (1999)Google Scholar
  6. [6]
    W Sun et al. J. Power Sources 309 135 (2016)ADSGoogle Scholar
  7. [7]
    V Hebbar and R F Bhajantri Mater. Sci. Eng. B 224 171 (2017)Google Scholar
  8. [8]
    P Hazra, A Jana, M Hazra and J Datta Rsc Adv. 4 33662 (2014)Google Scholar
  9. [9]
    Y Wang, K F Cai and X Yao J. Nanoparticle Res. 14 848 (2012)ADSGoogle Scholar
  10. [10]
    M Mukherjee, D Chakravorty and P M G Nambissan Phys. Rev. B 57 848 (1998)Google Scholar
  11. [11]
    R Xia et al. Phys. Chem. Chem. Phys. 3616 3616 (2017)Google Scholar
  12. [12]
    J C Machado, G G Silva and L S Soares J. Polym. Sci. Part B Polym. Phys. 38 1045 (2000)ADSGoogle Scholar
  13. [13]
    G Xue, J Zhong, S Gao and B Wang Carbon 96 871 (2016)Google Scholar
  14. [14]
    C Basavaraja, P X Thinh, W J Kim, M Revanasiddappa and D S Huh Polym. Compos. 33 1534 (2012)Google Scholar
  15. [15]
    T Sheela et al. J. Non. Cryst. Solids 454 19 (2016)ADSGoogle Scholar
  16. [16]
    S Ningaraju and H B Ravikumar J. Polym. Res. 24 11 (2017)Google Scholar
  17. [17]
    K H Kate, K Singh and P K Khanna Synth. React. Inorganic, Met. Nano-Metal Chem. 41 199 (2011)Google Scholar
  18. [18]
    Z-H Ge, B-P Zhang, Z-X Yu and B-B Jiang Crystengcomm. 14 2283 (2012)Google Scholar
  19. [19]
    S K Sharma et al. Phys. Chem. Chem. Phys. 16 1399 (2014)Google Scholar
  20. [20]
    P Bala, B K Samantaray, S K Srivastava and G B Nando J. Appl. Polym. Sci. 92 3583 (2004)Google Scholar
  21. [21]
    S Ibrahim and M R Johan Int. J. Electrochem. Sci. 7 2596 (2012)Google Scholar
  22. [22]
    S K Sharma, J Prakash, K Sudarshan, P Maheshwari, D Sathiyamoorthy and P K Pujari Phys. Chem. Chem. Phys. 14 10972 (2012)Google Scholar
  23. [23]
    V Hebbar, R F Bhajantri and J Naik J. Mater. Sci. Mater. Electron. 28 5827 (2017)Google Scholar
  24. [24]
    P P Kundu, J Biswas, H Kim and S Choe Eur. Polym. J. 39 1585 (2003)Google Scholar
  25. [25]
    R F Bhajantri, V Ravindrachary, A Harisha, C Ranganathaiah and G N Kumaraswamy Appl. Phys. A 87 797 (2007)Google Scholar
  26. [26]
    D K Pradhan, B K Samantaray, R N P Choudhary, N K Karan, R Thomas and R S Katiyar Int. J. Electrochem. Sci. 2 861 (2007)Google Scholar
  27. [27]
    S K Sharma, K Sudarshan, M Sahu and P K Pujari (2016) Rsc Adv. 6 67997Google Scholar
  28. [28]
    A Dorigato, Y Dzenis and A Pegoretti Mech. Mater. 61 79 (2013)Google Scholar
  29. [29]
    B Qi, S R Lu, X E Xiao, L L Pan, F Z Tan and J H Yu, eXPRESS Polym. Lett. 8 467 (2014)Google Scholar
  30. [30]
    X Zhao, Q Zhang, D Chen and P Lu (2010) Macromolecules 43 2357ADSGoogle Scholar
  31. [31]
    S K Sharma, J Prakash and P K Pujari Phys. Chem. Chem. Phys. 17 29201 (2015)Google Scholar
  32. [32]
    Y Chen, Y Qi, Z Tai, X Yan, F Zhu and Q. Xue Eur. Polym. J. 48 1026 (2012)Google Scholar
  33. [33]
    M Sassi, A Oueslati and M Gargouri Appl. Phys. A 119 763 (2015)Google Scholar
  34. [34]
    W Liu et al. Nano Lett. 15 2740 (2015)ADSGoogle Scholar
  35. [35]
    S J Tao J. Chem. Phys. 56 5499 (1972)ADSGoogle Scholar
  36. [36]
    M Eldrup, D Lightbody and J N Sherwood Chem. Phys. 63 51 (1981)Google Scholar
  37. [37]
    V Ravindrachary, R F Bhajantri, A Harisha, Ismayil and C Ranganathaiah Phys. Status Solidi C 6 2438 (2009)Google Scholar
  38. [38]
    S D Praveena, V Ravindrachary and R F Bhajantri Polym. Compos. 35 1267 (2014)Google Scholar
  39. [39]
    U Rana, P M G Nambissan, S Malik and K Chakrabarti, Phys. Chem. Chem. Phys. 16 3292 (2014)Google Scholar
  40. [40]
    G Dlubek, M A Alam, M Stolp and H-J Radusch J. Polym. Sci. Part B Polym. Phys. 37 1749 (1999)ADSGoogle Scholar
  41. [41]
    R F Bhajantri, V Ravindrachary, A Harisha, Ismayil and C Ranganathaiah Phys. Status Solidi C 6, 2429 (2009)Google Scholar
  42. [42]
    K V Aneesh Kumar, S Krishnaveni, P M G Nambissan, C Ranganathaiah and H B Ravikumar J. Non. Cryst. Solids 471 151 (2017)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • V Hebbar
    • 1
  • H B Ravikumar
    • 2
  • M Nandimath
    • 1
  • S Masti
    • 3
  • L M Munirathnamma
    • 2
  • J Naik
    • 4
  • R F Bhajantri
    • 1
    Email author
  1. 1.Department of PhysicsKarnatak UniversityDharwadIndia
  2. 2.Department of Studies in PhysicsUniversity of MysoreManasagangotri, MysoreIndia
  3. 3.Department of ChemistryKarnatak Science CollegeDharwadIndia
  4. 4.Department of PhysicsMangalore UniversityMangalagangotri, MangaloreIndia

Personalised recommendations