Advertisement

Indian Journal of Physics

, Volume 93, Issue 1, pp 7–14 | Cite as

Developments in molecular electronic structure evaluation based on the self-frictional field with Slater-type orbitals

  • E. Çopuroğlu
  • B. A. MamedovEmail author
Original Paper
  • 34 Downloads

Abstract

Molecular electronic structure evaluations are investigated here using complete orthonormal sets of Guseinov \(\psi^{\left( \alpha \right)}\) exponential-type orbitals (\(\psi^{\left( \alpha \right)}\) ETOs), where \(\alpha = 1,0, - 1, - 2, \ldots\) is the self-friction quantum number. Using two-center overlap integrals over Slater-type orbitals (STOs) with same screening constants, all the one- and two-electron multicenter integrals are reformulated with the help of the Löwdin alpha radial function. The proposed formula yields useful definitions that enable us to evaluate the multicenter integrals and related combined Hartree–Fock–Roothaan equations over STOs. In terms of the self-frictional field effect, the effectiveness of the method is demonstrated using the BH3 molecule as an example application. The results of the calculation are validated using existing methods.

Keywords

Slater-type orbitals Self-frictional field Multicenter molecular integrals Löwdin alpha radial function 

PACS Nos.

31.15.-p 31.15.ae 

References

  1. [1]
    J C Slater Quantum Theory of Atomic Structure (New York: Mc Graw-Hill) vol 2, p 267 (1960)Google Scholar
  2. [2]
    A Szabo and N S Ostlund Modern Quantum Chemistry (New York: McGraw-Hill) p 185 (1989)Google Scholar
  3. [3]
    I N Levine Quantum Chemistry (New York: Prentice Hall) p 245 (2000)Google Scholar
  4. [4]
    I P Grant Relativistic Quantum Theory of Atoms and Molecules (New York: Springer and Business Media) p 322 (2007)CrossRefGoogle Scholar
  5. [5]
    P O Löwdin Adv. Phys. 5 96 (1956)CrossRefGoogle Scholar
  6. [6]
    R A Friesner PNAS 102 6648 (2005)ADSCrossRefGoogle Scholar
  7. [7]
    R F W Bader J. Phys. Chem. 115 12667 (2011)CrossRefGoogle Scholar
  8. [8]
    R M Pitzer J. Chem. Theory Comput. 7 2346 (2011)CrossRefGoogle Scholar
  9. [9]
    Y B Malykhanov, S V Evseev and I N Eryomkin J. Appl. Spectr. 77 741 (2011)ADSCrossRefGoogle Scholar
  10. [10]
    I N Eryomkin and Y B Malykhanov J. Appl. Spectr. 78 301 (2011)ADSCrossRefGoogle Scholar
  11. [11]
    Y B Malykhanov and R N Pravosudov J. Appl. Spectr. 67 1 (2000)ADSCrossRefGoogle Scholar
  12. [12]
    K Ruedenberg, C C Roothaan and W Jaunzemis J. Chem. Phys. 24 201 (1956)ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M Lesiuk and R Moszynski Phys. Rev. E 90 063319 (2014)ADSCrossRefGoogle Scholar
  14. [14]
    I I Guseinov J. Mol. Struct. (Theochem) 422 69 (1998); 422 75 (1998)Google Scholar
  15. [15]
    I I Guseinov J. Mol. Struct. (Theochem) 417 117 (1997)CrossRefGoogle Scholar
  16. [16]
    L Berlu and H Safouhi J. Phys. A 36 11267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    L Berlu, H Safouhi and P. Hoggan Int. J. Quantum Chem. 99 221 (2004)CrossRefGoogle Scholar
  18. [18]
    T Ozdogan and M Orbay Math. Notes 82 141 (2006)CrossRefGoogle Scholar
  19. [19]
    B A Mamedov, M Kara and M Orbay Chin. J. Phys. 40 283 (2002)Google Scholar
  20. [20]
    M Lesiuk and R Moszynski Phys. Rev. E 90 063318 (2014)ADSCrossRefGoogle Scholar
  21. [21]
    D Petrov Physica B Cond. Matter 474 5 (2015)ADSCrossRefGoogle Scholar
  22. [22]
    D Petrov Physica B Cond. Matter 489 63 (2016)ADSCrossRefGoogle Scholar
  23. [23]
    J E Avery and J S Avery J. Math. Chem. 52 301 (2014) MathSciNetCrossRefGoogle Scholar
  24. [24]
    D Calderini, S Cavalli, C Coletti, G Grossi and V Aquilanti J. Chem. Sci. 124 187 (2012)CrossRefGoogle Scholar
  25. [25]
    C Coletti, D Calderini and V Aquilanti Adv. Quantum Chem. 67 73 (2013)CrossRefGoogle Scholar
  26. [26]
    P E Hoggan M B Ruiz and T Özdoğan Quantum Frontiers of Atoms and Molecules (New York: Publishing Inc.) p 61 (2011)Google Scholar
  27. [27]
    I I Guseinov J. Math. Chem. 42 415 (2006)MathSciNetCrossRefGoogle Scholar
  28. [28]
    H A Lorentz The Theory of Electrons (New York: Pergamon) p 276 (1953)Google Scholar
  29. [29]
    W Heitler The Quantum Theory of Radiation (London: Oxford University) p 57 (1950)zbMATHGoogle Scholar
  30. [30]
    L D Landau and E M Lifshitz The Classical Theory of Fields (New York: Pergamon) p 132 (1987)Google Scholar
  31. [31]
    I I Guseinov AIP Conf. Proceed. 899 65 (2007)ADSCrossRefGoogle Scholar
  32. [32]
    I I Guseinov Bull. Chem. Soc. Jpn. 85 1306 (2012)CrossRefGoogle Scholar
  33. [33]
    I I Guseinov Few-Body Syst. 54 1773 (2013)ADSCrossRefGoogle Scholar
  34. [34]
    B A Mamedov Int. J. Quantum Chem. 114 361 (2014)CrossRefGoogle Scholar
  35. [35]
    H W Jones Int. J. Quantum Chem. Symp. 15 287 (1981)Google Scholar
  36. [36]
    H W Jones Int. J. Quantum Chem. 18 709 (1980)CrossRefGoogle Scholar
  37. [37]
    H W Jones Int. J. Quantum Chem. 19 567 (1981)CrossRefGoogle Scholar
  38. [38]
    H W Jones Int. J. Quantum Chem. 21 1079 (1982)CrossRefGoogle Scholar
  39. [39]
    H W Jones Int. J. Quantum Chem. 23 953 (1983)CrossRefGoogle Scholar
  40. [40]
    H W Jones Int. J. Quantum Chem. 29 177 (1986)CrossRefGoogle Scholar
  41. [41]
    H W Jones Int. J. Quantum Chem. 41 749 (1992)CrossRefGoogle Scholar
  42. [42]
    H W Jones Int. J. Quantum Chem. 45 (1993)Google Scholar
  43. [43]
    H W Jones Int. J. Quantum Chem. 61 881 (1997)CrossRefGoogle Scholar
  44. [44]
    H W Jones Phys. Rev. A 30 1 (1984)ADSCrossRefGoogle Scholar
  45. [45]
    E U Condon and G H Shortley Theory of Atomic Spectra (London: Cambridge University Press) p 285 (1953).Google Scholar
  46. [46]
    I I Guseinov J. Phys. B 3 1399 (1970)ADSCrossRefGoogle Scholar
  47. [47]
    I I Guseinov, B A Mamedov and R Aydın J. Mol. Struct. (Theochem) 503 179 (2000)CrossRefGoogle Scholar
  48. [48]
    I I Guseinov Phys. Rev. A 32 1864 (1985)ADSCrossRefGoogle Scholar
  49. [49]
    I I Guseinov and B A Mamedov J. Mol. Struct. (Theochem) 465 1 (1999)CrossRefGoogle Scholar
  50. [50]
    I I Guseinov J. Mol. Struct. (Theochem) 343 173 (1995)CrossRefGoogle Scholar
  51. [51]
    I I Guseinov J. Math. Chem. 49 1011 (2011)MathSciNetCrossRefGoogle Scholar
  52. [52]
    I I Guseinov and B A Mamedov Z. Naturforsch. 62a 467 (2007)ADSGoogle Scholar
  53. [53]
    I S Gradshteyn and I M Ryzhik Tables of Integrals, Sums, Series and Products, 4th edn. (New York: Academic Press) p 465 (1980)Google Scholar
  54. [54]
    B A Mamedov and E Çopuroğlu Acta Phys. Pol. A 119 332 (2011)CrossRefGoogle Scholar
  55. [55]
    E Çopuroğlu and T Mehmetoglu IEEE Trans. Elec. Dev. 62 1580 (2015)CrossRefGoogle Scholar
  56. [56]
    I I Guseinov J. Math. Chem. 42 415 (2007)MathSciNetCrossRefGoogle Scholar
  57. [57]
    I I Guseinov Int. J. Quantum Chem. 19 149 (1986)Google Scholar
  58. [58]
    E Clementi and D L Raimondi J. Chem. Phys. 38 2686 (1963)ADSCrossRefGoogle Scholar
  59. [59]
    V Magnasco and A Rapallo Int. J. Quantum Chem. 79 91 (2000)CrossRefGoogle Scholar
  60. [60]
    W E Palke and W N Lipscomb J. Am. Chem. Soc. 88 2384 (1966)CrossRefGoogle Scholar
  61. [61]
    I. Shavitt International Conference on ETO Multicenter Molecular Integrals (Florida A&M University) (1980)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesGaziosmanpaşa UniversityTokatTurkey

Personalised recommendations