Indian Journal of Physics

, Volume 93, Issue 1, pp 27–32 | Cite as

Facile synthesis of Cu/N co-doped TiO2 nanoparticles and their optical and electrical properties

  • M. DhondeEmail author
  • K. Sahu Dhonde
  • K. Purohit
  • V. V. S. Murty
Original Paper


In the present work, pure and copper/nitrogen (Cu/N) co-doped TiO2 nanoparticles (NPs) with various Cu concentrations have been synthesized via sol–gel route. The optical and electrical properties of the prepared pure and Cu/N-doped TiO2 NPs have been assessed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope, Brunauer, Emmett and Teller method and UV–Vis spectroscopy. The results show that the addition of suitable amounts of Cu and N content in TiO2 can alter its optical and electrical properties by extending absorption in the visible region and band gap reduction. XPS and XRD measurements suggest that some of the Ti sites are replaced by Cu atoms, while O sites are occupied by N atoms. An adequate addition of Cu/N in TiO2 could lead to smaller particle size, higher specific surface area, increased dye adsorption and retarded charge carrier recombination. An optimized 0.3 mol% Cu/N-doped sample shows a significant change in band gap value of TiO2 from 3.2 to 2.78 eV, enabling it to respond in the visible region. Hence, it can be used as a suitable alternative nanomaterial for dye-sensitized solar cell photoanode application and for photocatalysis operation as well.


Cu/N-doped TiO2 NPs Specific surface area Sol–gel 


81.20.−n 81.70.−q 61.10.Nz 33.60.Fy 68.37.Hk 68.37.Lp 



The authors are thankful to Indian Nanoelectronics User Program (INUP) for availing financial support which is sponsored by DIT, MCIT, Government of India and Department of Metallurgical Engineering and Materials Science IITB. Authors are also thankful to V. Ganeshan, R. J. Choudhary, V. Deshpande and Mukul Gupta Scientists IUC-DAE CSR, Indore, for providing guidance and laboratory support.


Funding was provided by Indian Nanoelectronics User Programme (Grant No. 13DIT006).


  1. [1]
    L Zhang, H Daipinga and P Jiang Catal. Commun. 10 1414 (2009)CrossRefGoogle Scholar
  2. [2]
    L S Yoong, F K Chong and B K Dutta Energy 34 1652 (2009)Google Scholar
  3. [3]
    T Kamegawa, H Imai and H Yamashita Bull. Chem. Soc. Jpn. 89 743 (2016)CrossRefGoogle Scholar
  4. [4]
    S G Kumar and K S R K Rao Appl. Surf. Sci. 391 124 (2017)ADSCrossRefGoogle Scholar
  5. [5]
    H Hattori, M Eguchi, Y Ide and T Sano Bull. Chem. Soc. Jpn. 90 1276 (2017)CrossRefGoogle Scholar
  6. [6]
    R Atchudan, T N J I Edison, S Perumal, D Karthikeyan and Y R Lee J. Photochem. Photobiol. 333 92 (2017)CrossRefGoogle Scholar
  7. [7]
    L Zhoa, C Zhong, Y Wang, S Wang, B Dong and L Wan J. Power Sources 49 292 (2015)Google Scholar
  8. [8]
    X Zhang, F Liu, Q L Huang, G Zhou and Z S Wang J. Phys. Chem. C 115 12665 (2011)CrossRefGoogle Scholar
  9. [9]
    S Muduli, O Game, V Dhas, K Vijayamohanan, K A Bogle, N Valanoor and S B Ogale Solar Energy 6 1428 (2012).ADSCrossRefGoogle Scholar
  10. [10]
    F Huang, Q Li, G J Thorogood, Y-B Cheng and A R Caruso J. Mater. Chem. 22 17128 (2012)CrossRefGoogle Scholar
  11. [11]
    M Dhonde, K Sahu, V V S Murty, S S Nemala and P Bhargava Electrochim. Acta 249 89 (2017)CrossRefGoogle Scholar
  12. [12]
    K Sahu and V V S Murty Indian J. Pure Appl. Phys. 54 485 (2016)Google Scholar
  13. [13]
    S M Hosseinpour-Mashkani, M Maddahfar A and Sobhani-Nasab S. Afr. J. Chem. 70 44 (2017)Google Scholar
  14. [14]
    H Jiang, Q Wang, S Zang, J Li and Q Wang J. Hazard. Mater 261 44 (2013)CrossRefGoogle Scholar
  15. [15]
    Y K Lai, et al. J. Hazard Mater. 184 885 (2010)CrossRefGoogle Scholar
  16. [16]
    Y Xie, et al. J. Power Sources 224 168 (2013)CrossRefGoogle Scholar
  17. [17]
    S P Lim, A Pandikumar, H N Lim, R Ramaraj and N M Huang Sci. Rep. 5 11922 (2015)Google Scholar
  18. [18]
    H R Naderi, A Sobhani-Nasab, M Rahimi-Nasrabadi and M R Ganjali Appl. Surf. Sci. 423 1025 (2017)ADSCrossRefGoogle Scholar
  19. [19]
    S Wang, X J Yang, Q Jiang and J S Lian Mater. Sci. Semicond. Process. 24 247(2014)CrossRefGoogle Scholar
  20. [20]
    [20] J Y Park, et al. J. Power Sources 306 764 (2016)ADSCrossRefGoogle Scholar
  21. [21]
    R Gupta, N K Rao Eswar, J M Modak and G Madras RSC Adv. 6 85675 (2016)CrossRefGoogle Scholar
  22. [22]
    R Jaiswal, J Bharambe, N Patel, A Dashora, D C Kothari and A Miotello Appl. Catal. B Environ. 168 333 (2015)CrossRefGoogle Scholar
  23. [23]
    C S Kim, J W Shin, S H An, H D Jang and T O Kim Chem. Eng. J. 40 204 (2012)Google Scholar
  24. [24]
    J A Cha, S H An, H D Jang, C S Kim, D K Song and T O Kim Adv. Powder Technol. 23 717 (2011)CrossRefGoogle Scholar
  25. [25]
    P Cheng, C Deng, X Dai, B Li, D Liu and J Xu Photochem. Photobiol. A Chem. 195 144 (2008)CrossRefGoogle Scholar
  26. [26]
    G Cheng, M S Akhtar, O B Yang and F J Stadler ACS Appl. Mater. Interfaces 5 6635 (2013)CrossRefGoogle Scholar
  27. [27]
    J Chae, D Y Kim, S Kim and M Kang J. Ind. Eng. Chem. 16 906 (2010)CrossRefGoogle Scholar
  28. [28]
    C S Kim, J W Shin, Y H Cho, H D Jang, H S Byund and T O Kim Appl. Catal. A General 455 211 (2013)CrossRefGoogle Scholar
  29. [29]
    Y Jiang, Y Yang, L Qiang, R Fan, H Ning, L Li, T Ye, B Yang and W Cao J. Power Sources 278 527 (2015)ADSCrossRefGoogle Scholar
  30. [30]
    J Y Park, et al. J. Power Sources RSC Adv. 4 9946 (2014)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsPrestige Institute of Engineering Management and ResearchIndoreIndia
  2. 2.Department of PhysicsGovt. Holkar Science CollegeIndoreIndia

Personalised recommendations