Advertisement

Indian Journal of Physics

, Volume 93, Issue 1, pp 115–121 | Cite as

Harmonic velocity noise and its resonance in classical systems

  • Ruyin Chen
  • Lili Pan
  • Linru NieEmail author
  • Chongyang Chen
  • Chunhua Zeng
  • Shifeng Liu
Original Paper
  • 75 Downloads

Abstract

We investigate a harmonic velocity noise and its resonance effect in classical linear and bistable systems. The harmonic velocity noise can be obtained via RLC oscillation circuit driven by the classical Gaussian white noise. Our numerical results indicate that mean square displacement of a free Brownian particle under action of the noise tends to be zero. In the classical systems, the noise not only suppresses fluctuation of particle but also induces resonance effect. Moreover, a noise-enhanced stability phenomenon in the bistable system is also found.

Keywords

Harmonic velocity noise Resonance effect Mean square displacement Noise-enhanced stability 

PACS Nos.

05.40.-a 02.50.-r 

Notes

Acknowledgements

This work was supported by the Research Group of Non-equilibrium Statistics (grant No. 14078206), Kunming University of Science and Technology, China.

References

  1. [1]
    M Schunack, T R Linderoth, F Rosei, E Laengsgaard, I Stendgaard and F Besenbacher Phys. Rev. Lett. 88 156102 (2002)ADSCrossRefGoogle Scholar
  2. [2]
    G Ertl and H J Freund Phys. Today 52 32 (1999)CrossRefGoogle Scholar
  3. [3]
    W D Luedtke and U Landman Phys. Rev. Lett. 82 3835 (1999)ADSCrossRefGoogle Scholar
  4. [4]
    P Jensen Rev. Mod. Phys. 71 1695 (1999)ADSCrossRefGoogle Scholar
  5. [5]
    A C Levi and M Kotrla J. Phys. Condens. Matter 9 299 (1997)ADSCrossRefGoogle Scholar
  6. [6]
    K D Dobbs and D J Doren J. Chem. Phys. 97 3722 (1992)ADSCrossRefGoogle Scholar
  7. [7]
    D C Senft and G Ehrlich Phys. Rev. Lett. 74 294 (1995)ADSCrossRefGoogle Scholar
  8. [8]
    T R Linderoth et al Phys. Rev. Lett. 78 4978 (1997)Google Scholar
  9. [9]
    A P Graham et al Phys. Rev. B 56 10567 (1997)Google Scholar
  10. [10]
    S M Oh, S J Koh et al Phys. Rev. Lett. 88 236102 (2002)Google Scholar
  11. [11]
    G E Poirier and E D Plyant Science 272 1145 (1996)ADSCrossRefGoogle Scholar
  12. [12]
    T Yokoyama, S Yokoyama, T Kamikado, Y Okuno and S Mashiko Nature 413 619 (2001)ADSCrossRefGoogle Scholar
  13. [13]
    R M Tromp and J B Jannon Surf. Rev. Lett. 9 1565 (2002)ADSCrossRefGoogle Scholar
  14. [14]
    T Ala-Nissila, R Ferrando and S C Ying Adv. Phys.  51 949 (2002)Google Scholar
  15. [15]
    R Raccis, A Nikoubashman, M Retsch, U Jonas, K Koynov, H J Butt, C N Likos and G Fytas ACS Nano 5 4607 (2011)CrossRefGoogle Scholar
  16. [16]
    F Amblard, A C Maggs, B Yurke, A N Pargellis and S Leibler Phys. Rev. Lett. 77 4470 (1996)Google Scholar
  17. [17]
    O Bénichou, P Illien, G Oshanin, A Sarracino and R Voituriez Phys. Rev. Lett. 115 220601 (2015)Google Scholar
  18. [18]
    A A Dubkov and B Spagnolo Acta Phys. Pol. 38 1745 (2007)Google Scholar
  19. [19]
    A A Dubkov, B Spagnolo and V V Uchaikin Int. J. Bifurcat. Chaos 18 2649 (2008)Google Scholar
  20. [20]
    B Liu and J Goree Phys. Rev. Lett. 100 055003 (2008)ADSCrossRefGoogle Scholar
  21. [21]
    B Liu, J Goree and Y Feng Phys. Rev. E 78 046403 (2008)Google Scholar
  22. [22]
    S Ratynskaia, K Rypdal, C Knapek, S Khrapak, A V Milovanov, A Ivlev, J J Rasmussen and G E Morfill Phys. Rev. Lett. 96 105010 (2006)Google Scholar
  23. [23]
    M Jara, T Komorowski and S Olla Commun. Math. Phys. 339 407-453 (2015)ADSCrossRefGoogle Scholar
  24. [24]
    Y Gambin, G Massiera, L Ramos, C Ligoure and W Urbach Phys. Rev. Lett. 94 110602 (2005)ADSCrossRefGoogle Scholar
  25. [25]
    I M Sokolov, J Mai and A Blumen Phys. Rev. Lett. 79 857 (1997)ADSCrossRefGoogle Scholar
  26. [26]
    P D Ditlevsen Geophys. Res. Lett. 26 1441 (1999)ADSCrossRefGoogle Scholar
  27. [27]
    P D Ditlevsen, M S Kristensen and K K Andersen J. Clim.  18 2594 (2005)ADSCrossRefGoogle Scholar
  28. [28]
    P Santini Phys. Rev. E 61 93 (2000)ADSCrossRefGoogle Scholar
  29. [29]
    G Augello, D Valenti and B Spagnolo Eur. Phys. J. B 78 225 (2010)ADSCrossRefGoogle Scholar
  30. [30]
    N V Agudov, A A Dubkov and B Spagnolo Physica A 325 144 (2003)ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D Valenti, C Guarcello and B Spagnolo Phys. Rev. B 89 214510 (2014)ADSCrossRefGoogle Scholar
  32. [32]
    A Fiasconaro and B Spagnolo Phys. Rev. E 83 041122 (2011)ADSCrossRefGoogle Scholar
  33. [33]
    S Ciuchi, F de Pasquale and B Spagnolo Phys. Rev. E 47 3915 (1993)Google Scholar
  34. [34]
    R N Mantegna, B Spagnolo, L Testa and M Trapanese J. Appl. Phys.  97 453 (2005)CrossRefGoogle Scholar
  35. [35]
    D Sigeti and W Horsthemke, J. Stat. Phys. 54 1217 (1989)ADSCrossRefGoogle Scholar
  36. [36]
    A Neiman, L Schimansky-Geier, A Cornell-Bell and F Moss, Phys. Rev. Lett. 83 4896 (1999)ADSCrossRefGoogle Scholar
  37. [37]
    G Giacomelli, M Giudici, S Balle and J R Tredicce, Phys. Rev. Lett. 84 3298 (2000)ADSCrossRefGoogle Scholar
  38. [38]
    Y Jiang and H Xin, Phys. Rev. E 62 1846 (2000)ADSCrossRefGoogle Scholar
  39. [39]
    B Hu and C Zhou, Phys. Rev. E 62 1983 (2000)ADSCrossRefGoogle Scholar
  40. [40]
    A S Pikovsky and J Kurths Phys. Rev. Lett. 78 775 (1997)ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    W J Rappel and S H Strogztz Phys. Rev. E 50 3249 (1994)ADSCrossRefGoogle Scholar
  42. [42]
    G Hu, T Ditzinger, C Z Ning and H Haken, Phys. Rev. Lett. 71 807 (1993)ADSCrossRefGoogle Scholar
  43. [43]
    A C Scott, Rev. Mod. Phys. 47 487 (1975)ADSCrossRefGoogle Scholar
  44. [44]
    J D Bao, Y L Song, Q Ji and Y Z Zhuo Phys. Rev. E 72 011113 (2005)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • Ruyin Chen
    • 1
  • Lili Pan
    • 1
  • Linru Nie
    • 1
    Email author
  • Chongyang Chen
    • 1
  • Chunhua Zeng
    • 1
  • Shifeng Liu
    • 1
  1. 1.Faculty of ScienceKunming University of Science and TechnologyKunmingChina

Personalised recommendations