Advertisement

Indian Journal of Physics

, Volume 93, Issue 1, pp 75–92 | Cite as

Study of the nuclear deformation of some even–even isotopes using Hartree–Fock–Bogoliubov method (effect of the collective motion)

  • A. A. AlzubadiEmail author
  • R. S. Obaid
Original Paper
  • 49 Downloads

Abstract

In the present research, the nuclear deformation of the Ne, Mg, Si, S, Ar, and Kr even–even isotopes has been investigated within the framework of Hartree–Fock–Bogoliubov method and SLy4 Skyrme parameterization. In particular, the deform shapes of the effect of nucleons collective motion by coupling between the single-particle motion and the potential surface have been studied. Furthermore, binding energy, the single-particle nuclear density distributions, the corresponding nuclear radii, and quadrupole deformation parameter have been also calculated and compared with the available experimental data. From the outcome of our investigation, it is possible to conclude that the deforming effects cannot be neglected in a characterization of the structure of the neutron-rich nuclei. The relation between the single-particle motion and the potential surface leads to note that the change in the interactions between the nucleons causes the evolution of nuclear surface and leads to variation in the potential shape.

Keywords

Hartree–Fock–Bogoliubov method Skyrme interaction Nuclear deformation Quadrupole deformation parameter 

PACS Nos.

21.10.Ky 21.60.Ev 

References

  1. [1]
    A Bohr and B R Mottelson Nuclear Structure, Volume 1: Single-Particle Motion (Singapore: World Scientific) (1969)Google Scholar
  2. [2]
    P Ring and P Schuck The Nuclear Many Body Problem (Berlin: Springer) (1980)CrossRefGoogle Scholar
  3. [3]
    Y Alhassid, S Levit and J Zingman Phys. Rev. Lett. 57 5639 (1986)Google Scholar
  4. [4]
    F Iachello, N V Zamfir and R F Casten Phys. Rev. Lett. 81 1191 (1998)ADSCrossRefGoogle Scholar
  5. [5]
    N Shimizu, T Otsuka, T Mizusaki and M Honma Phys. Rev. C 70 054313 (2004)ADSCrossRefGoogle Scholar
  6. [6]
    J Escher, C Bahri, D Troltenier and J P Draayer Nucl. Phys. A 633 662 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    B D Day Rev. Mod. Phys. 39 719 (1967)ADSCrossRefGoogle Scholar
  8. [8]
    P Ring Prog. Part. Nucl. Phys. 37 193 (1996)ADSCrossRefGoogle Scholar
  9. [9]
    M Bender, P-H Heenen and P-G Reinhard Rev. Mod. Phys. 75 121 (2003)ADSCrossRefGoogle Scholar
  10. [10]
    P G Reinhard and E W Otten Nucl. Phys. A 420 173 (1984)ADSCrossRefGoogle Scholar
  11. [11]
    T Inakura, M Yamagami and K Matsuyanagi Int. J. Mod. Phys. E 13 157 (2004)ADSCrossRefGoogle Scholar
  12. [12]
    C J Gen, C X Zhou, W T Tai and M Y Gang Chin. Phys. Soc. 14 1009 (2005)Google Scholar
  13. [13]
    R Guzman and P Sarriguren Phys. Rev. C 76 064303 (2007)ADSCrossRefGoogle Scholar
  14. [14]
    A Li, X R Zhou and H Sagawa Theor. Exp. Phys. 063D03 9 (2013)Google Scholar
  15. [15]
    A A Alzubadi and A A Abdulhasan Karbala Int. J. Mod. Sci. 1 110 (2015)CrossRefGoogle Scholar
  16. [16]
    M V Stoistsov, J Dobaczewski, W Nazarewicz and P Ring Comput. Phys. Commun. 167 43 (2005)ADSCrossRefGoogle Scholar
  17. [17]
    T H R Skyrme Nucl. Phys. 9 615 (1959)CrossRefGoogle Scholar
  18. [18]
    J Kvasil Nuclear Structure and Nuclear Processes (Prague: Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University) (2013) Google Scholar
  19. [19]
    A I Goodman Adv. Nucl. Phys. 11 263 (1975)Google Scholar
  20. [20]
    F Tondeur Nucl. Phys. A 315 353 (1979)ADSCrossRefGoogle Scholar
  21. [21]
    W Greiner and J A Maruhn Nuclear Models (Berlin: Springer) (1996)CrossRefzbMATHGoogle Scholar
  22. [22]
    D J Rowe Nuclear Collective Motion Models and Theory (Singapore: World Scientific Publishing Co. Pte. Ltd) (2010)CrossRefzbMATHGoogle Scholar
  23. [23]
    B Mottelson Rev. Mod. Phys. 48 375 (1976)ADSCrossRefGoogle Scholar
  24. [24]
    W Nazarewicz Nucl. Phys. A 557 489 (1993)ADSCrossRefGoogle Scholar
  25. [25]
    E Chabanat, P Bonche, P Haensel, J Meyer and R Schaeffer Nucl. Phys. A 635 231 (1998)ADSCrossRefGoogle Scholar
  26. [26]
    I Angeli and K P Marinova At. Data Nucl. Data Tables 99 69 (2013)ADSCrossRefGoogle Scholar
  27. [27]
    National Nuclear Data Center Brookhaven National Laboratory, www.nndc.bnl.gov
  28. [28]
    D L Hill and J A Wheeler Phys. Rev. 89 1102 (1953)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq

Personalised recommendations