Advertisement

Predictive models of the galaxies’ movement speeds and accelerations of movement on applying the Doppler Effect

  • J. Skeivalas
  • V. Turla
  • M. Jurevicius
Original Paper
  • 7 Downloads

Abstract

This article discusses the theoretical assumptions for the development of a predictive model of galaxy movement speed and acceleration on applying the measurement data of the parameter z in the formula for the Doppler Effect. Galaxy movement speed and acceleration are understood as multidimensional continuous values when the values of vectors of speed and acceleration are calculated according to the redshift parameter z measurements in the relevant Universe time moments. Galaxy movement acceleration is obtained as a partial derivative of galaxy speed with respect to the time t of oscillations of the received redshift signal. The theoretical expressions of the functions of galaxy speed and acceleration are obtained by approximating in the form of a polynomial when the values of the polynomial parameters are established by the least squares method on applying operators of the Matlab set of programs.

Keywords

The Doppler Effect Galaxy speed Galaxy acceleration 

PACS Nos.

02.50.Ey 02.50.Fz 13.85.Tp 42.30.-d 

References

  1. [1]
    H Kahmen Elektronische Messverfahren in der Geodäsie. Grundlagen und Anwendungen. (Verlag Karlsruhe) Weichmann 252 (1978)Google Scholar
  2. [2]
    S V Pilipenko Paper-and-pencil cosmological calculator, arXiv:1303.5961v1 (2013)
  3. [3]
    R Watkins and H A Feldman Mon Not R Astron Soc 450(2) 1868.  https://doi.org/10.1093/mnras/stv651 (2015)ADSCrossRefGoogle Scholar
  4. [4]
    S Agarwal, H A Feldman and R Watkins Mon Not R Astron Soc 424(4) 2667.  https://doi.org/10.1111/j.1365-2966.2012.21345.x (2015)ADSCrossRefGoogle Scholar
  5. [5]
    J Earman and C Glymour Dietrich College of Humanities and Social Sciences at Research Showcase at CMU 41 (1980)Google Scholar
  6. [6]
    P S Florides Int J Mod Phys A 17 2759.  https://doi.org/10.1142/s0217751x02011862 (2002)ADSCrossRefGoogle Scholar
  7. [7]
    K N Singh, N Pant and M Govender Indian J Phys 90(11) 1215.  https://doi.org/10.1007/s12648-016-0870-5 (2016)ADSCrossRefGoogle Scholar
  8. [8]
    L P Cassarà, L Piovan and C Chiosi Mon Not R Astron Soc 450(3) 2231.  https://doi.org/10.1093/mnras/stv752 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Geodesy and CadastreVilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Department of Mechatronics, Robotics and Digital ManufacturingVilnius Gediminas Technical UniversityVilniusLithuania
  3. 3.Department of Mechanical and Materials EngineeringVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations