Advertisement

Sheath criterion in constant mean free path collisional plasma with two distinct temperature q-nonextensive electrons

  • Dima Rani Borgohain
  • K. Saharia
Original Paper
  • 8 Downloads

Abstract

A constant mean free path collisional plasma sheath model is investigated in the presence of two-temperature q-nonextensive electrons and fluid ions. By using Sagdeev potential technique, a modified Bohm sheath criterion is derived and also verified. It is shown that the density distribution of positive ions reduces monotonically when the Bohm velocity lies between the derived limits. The effect of collision on the plasma sheath profiles viz. density, potential, net space charge density and positive ion velocity in the sheath in presence of the proposed plasma configuration is investigated. It is also shown that the increasing values of ion-neutral collisionality leads to a decrease of sheath thickness, increase of sheath potential and net space charge density in the sheath region.

Keywords

q-Nonextensive particle distribution Two-temperature electrons Plasma sheath Collision effect Sagdeev potential 

PACS Nos.

52.40.Kh 52.30.Ex 52.20.Hv 

References

  1. [1]
    F F Chen Introduction to Plasma Physics (New York: Plenum Press) (1974)Google Scholar
  2. [2]
    M M Hatami Phys. Plasmas 22 023506 (2015)ADSCrossRefGoogle Scholar
  3. [3]
    D Bohm The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill) (1949)Google Scholar
  4. [4]
    J Ou, N Xiang, C Gan and J Yang Phys. Plasmas 20 063502 (2013)ADSCrossRefGoogle Scholar
  5. [5]
    ITER Physics Basis Editors Nucl. Fusion 39 2137 (1999)Google Scholar
  6. [6]
    P C Stangeby The Plasma Boundary of Magnetic Fusion Devices (Bristol and Philadelphia: Institute of Physics Publishing) (2000)Google Scholar
  7. [7]
    K Shiraishi and S Takamura Contrib. Plasma Phys. 32 243 (1992)ADSCrossRefGoogle Scholar
  8. [8]
    P C Stangeby Plasma Phys. Control. Fusion 37 1031 (1995)ADSCrossRefGoogle Scholar
  9. [9]
    R W Boswell, A J Lichtenberg and D Vender IEEE Trans. Plasma Sci. 20 62 (1992)Google Scholar
  10. [10]
    Z X Wang, J Y Liu, X Zou, Y Liu and X G Wang Chin. Phys. Lett. 20 1537 (2003)ADSCrossRefGoogle Scholar
  11. [11]
    K Yasserian, M Aslaninejad, M Ghoranneviss and F M Aghamir J. Phys. D Appl. Phys. 41 105215 (2008)ADSCrossRefGoogle Scholar
  12. [12]
    J I F Palop, J Ballesteros, M A Hernandez and R M Crespo Plasma Sources Sci. Technol. 16 S76 (2007)ADSCrossRefGoogle Scholar
  13. [13]
    T E Sheridan and J Goree Phys. Plasmas 3 2796 (1991)Google Scholar
  14. [14]
    R Moulick and K S Goswami Phys. Plasmas 21 083702 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    M M Hatami Phys. Plasmas 22 013508 (2015)ADSCrossRefGoogle Scholar
  16. [16]
    E I El-Awady and W M Moslem Phys. Plasmas 18 082306 (2011)ADSCrossRefGoogle Scholar
  17. [17]
    A Renyi Acta Math. Hung. 6 285 (1955)Google Scholar
  18. [18]
    C Tsallis J. Stat. Phys. 52 479 (1988)ADSCrossRefGoogle Scholar
  19. [19]
    J Du Phys. Lett. A 329 262 (2004)CrossRefGoogle Scholar
  20. [20]
    Y Liu, S Q Liu and L Zhou Phys. Plasmas 20 043702 (2013)ADSCrossRefGoogle Scholar
  21. [21]
    N N Safa, H Ghomi and A R Niknam Phys. Plasmas 21 082111 (2014)ADSCrossRefGoogle Scholar
  22. [22]
    M Sharifian, H R Sharifinejad, M B Zarandi and A R Niknam J. Plasma Phys. 80 607 (2014)ADSCrossRefGoogle Scholar
  23. [23]
    D R Borgohain, K Saharia and K S Goswami Phys. Plasmas 23 122113 (2016)ADSCrossRefGoogle Scholar
  24. [24]
    D Ismael and C Hassan Eur. Phys. J. D 71 1 (2017)CrossRefGoogle Scholar
  25. [25]
    A Arghand-Hesar, A Esfandyari-Kalejahi and M Akbari-Moghanjoughi Phys. Plasmas 24 (6) 063504 (2017)ADSCrossRefGoogle Scholar
  26. [26]
    M Li, M A Vyvoda, S K Dew and M J Brett IEEE Trans. Plasma Sci. 28 248 (2000)ADSCrossRefGoogle Scholar
  27. [27]
    H Amemiya J. Phys. D Appl. Phys. 23 999 (1990)ADSCrossRefGoogle Scholar
  28. [28]
    M A Lieberman and A J Lichtenbereg Principle of Plasma Discharges and Material Processing (New York: John Wiley and Sons) (1994)Google Scholar
  29. [29]
    N S J Braithwaite and J E Allen J. Phys. D Appl. Phys. 21 1733 (1988)ADSCrossRefGoogle Scholar
  30. [30]
    K Yasserian and M Aslaninejad Phys. Plasmas 19 073507 (2012)ADSCrossRefGoogle Scholar
  31. [31]
    K Yasserian and M Aslaninejad Eur. Phys. J. D 67 (8) 161 (2013)ADSCrossRefGoogle Scholar
  32. [32]
    M Tribeche, L Djebarni and R Amour Phys. Plasmas 17 042114 (2010)ADSCrossRefGoogle Scholar
  33. [33]
    N. S. Saini and Shalini Astrophys. Space Sci. 346 155 (2013)Google Scholar
  34. [34]
    M Ferdousi and A A Mamun Braz. J. Phys. 45 89 (2014)ADSCrossRefGoogle Scholar
  35. [35]
    K-U Riemann J. Phys. D 24 493 (1991)Google Scholar
  36. [36]
    H Ghomi and M Khoramabadi J. Plasma Phys. 76 247 (2010)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsNorth Eastern Regional Institute of Science and TechnologyNirjuliIndia

Personalised recommendations