Advertisement

Indian Journal of Physics

, Volume 92, Issue 12, pp 1613–1621 | Cite as

Optimized geometry, spectroscopic characterization and nonlinear optical properties of carbazole picrate: a density functional theory study

  • Ç Arıoğlu
  • Ö Tamer
  • D Avcı
  • Y Atalay
Original Paper
  • 62 Downloads

Abstract

The molecular modeling of carbazole picrate (CP) was carried out by using B3LYP and HSEH1PBE levels of density functional theory and 6-311++G(d,p) basis set by means of Gaussian 09 revision D.01 program. These methods have been used to determine the optimized molecular geometries, vibrational frequencies, electronic transitions and bonding features of the title compound. The computed small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the investigated compound. Additionally, the intensive interactions characterized by high stabilization energies were the powerful indicators of intra- and intermolecular charge transfer interactions. The obtained molecular dipole moment (μ), polarizability (\(\left\langle \alpha \right\rangle\)) and hyperpolarizability (\(\left\langle \beta \right\rangle\)) indicates that CP exhibits considerable nonlinear optical characteristic. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. Additionally, the hydrogen bonding interactions were visualized via molecular electrostatic potential surface.

Keywords

Carbazole picrate Density functional theory IR and NMR Nonlinear optics Natural bond orbital 

PACS Nos.

33.15.Dj 31.15.E− 33.20.Tp 67.30.er 33.20.Lg 42.65. − k 

References

  1. [1]
    W Maneerat, T Ritthiwigrom, S Cheenpracha, T Promgool, K Yossathera and S Deachathai, et al J. Nat. Prod. 75 741 (2012)CrossRefGoogle Scholar
  2. [2]
    H Liu, C J Li, J Z Yang, N Ning, Y K Si and L Li, et al J. Nat. Prod. 75 677 (2012)CrossRefGoogle Scholar
  3. [3]
    U Songsiang, T Thongthoom, C Boonyarat and C Yenjai Claurailas A–D, J. Nat. Prod. 74 208 (2011)CrossRefGoogle Scholar
  4. [4]
    H-M Xia, G-Q Ou Yang, C-J Li, J-Z Yang, J Ma, D Zhang, Y Li, L Li and D-M Zhang, Fitoterapia 83 103 (2015)Google Scholar
  5. [5]
    S K Chen, B Y Chen and H Li Flora of Reipublicae Popularis Sinicae (Zhongguo Zhiwu Zhi) (Beijing: Science Press) 43 135 (1997)Google Scholar
  6. [6]
    G W Gribble Synlett 289 (1991)Google Scholar
  7. [7]
    G W Gribble in: A Brossi (Ed.), The Alkaloids Academic (San Diego: Academic) (1990)Google Scholar
  8. [8]
    M Saravanabhavan, K Sathya, V G Puranik and M Sekar Spectrochimica Acta A: Mol. Biomol. Spectrosc. 118 399 (2014)ADSCrossRefGoogle Scholar
  9. [9]
    H J Knolker and K R Reddy Chem. Rev. 102 4303 (2002)CrossRefGoogle Scholar
  10. [10]
    R Huber, M T Gonzalez, S Wu, M Langer, S Grunder, V Horhoiu, M Mayor, M R Bryce, C S Wang, R Jitchati, C Schonenberger and M Calame J. Am. Chem. Soc. 130 1080 (2008)CrossRefGoogle Scholar
  11. [11]
    S A Trammell, M Moore, D Lowy and N Lebedev J. Am. Chem. Soc. 130 5579 (2008)CrossRefGoogle Scholar
  12. [12]
    R Yamada, H Kumazawa, T Noutoshi, S Tanaka and H Tada Nano Lett. 8 1237 (2008)ADSCrossRefGoogle Scholar
  13. [13]
    S Liu, P Jiang, G L Song, R Liu and H J Zhu Dyes Pigm. 81 218 (2009)Google Scholar
  14. [14]
    T H Xu, R Lu, X L Liu, P Chen, X P Qiu and Y Y Zhao J. Org. Chem. 73 1809 (2008)CrossRefGoogle Scholar
  15. [15]
    E Gondek, J Niziol, A Danel, I V Kityk, M Pokladko, J Sanetra and E Kulig J. Lumin. 128 1831 (2008)ADSCrossRefGoogle Scholar
  16. [16]
    T Uma Devi, N Lawrence, R Ramesh Babu and K Ramamurthi Spectrochimica Acta A 71 340 (2008)Google Scholar
  17. [17]
    S Altürk, Ö Tamer, D Avcı and Y Atalay J. Organomet. Chem. 797 110 (2015)CrossRefGoogle Scholar
  18. [18]
    V Crasta, V Ravindrachary, R F Bhajantri and R Gonsalves J. Cryst. Growth 267 129 (2004)Google Scholar
  19. [19]
    C K Lakshmana Perumal, A Arulchakkaravarthi, P Santhanaraghavan and P Ramaswami J. Cryst. Growth 240 212 (2002)Google Scholar
  20. [20]
    D S Chemla and J Zyss (Eds.), Non-linear Optical Properties of Organic Molecules and Crystals (London: Academic Press) 1 726 (1987)Google Scholar
  21. [21]
    L Joseph, D Sajan, V Shettigar, K Chaitanya, N Misra, T Sundius and I Němec Mater. Chem. Phys. 141 248 (2013)Google Scholar
  22. [22]
    M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb and J R Cheeseman et al., Gaussian 09, Rev D.1, Gaussian, Inc., Wallingford CT, (2013)Google Scholar
  23. [23]
    R Dennington, T. Keith and J Millam: Semichem Inc., Shawnee Mission KS, GaussView, Version 5, (2009)Google Scholar
  24. [24]
    J Heyd and G E Scuseria J. Chem. Phys. 121 1187 (2004)ADSCrossRefGoogle Scholar
  25. [25]
    J Heyd and G E Scuseria J. Chem. Phys. 120 7274 (2004)ADSCrossRefGoogle Scholar
  26. [26]
    J Heyd, J E Peralta, G E Scuseria and R L Martin J. Chem. Phys. 123 1 (2005)Google Scholar
  27. [27]
    J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 124 219906 (2006)ADSGoogle Scholar
  28. [28]
    A V Krukau, O A Vydrov, A F Izmaylov and G E Scuseria J. Chem. Phys. 125 224106 (2006)ADSGoogle Scholar
  29. [29]
    A D Becke J. Chem. Phys. 98 5648 (1993)ADSCrossRefGoogle Scholar
  30. [30]
    C Lee, W Yang and R G Parr Phys. Rev. B 37 785 (1988)ADSCrossRefGoogle Scholar
  31. [31]
    S I Gorelsky SWizard Program Revision 4.5, University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/(2010)
  32. [32]
    F Weinhold, C Landis and Valency Bonding: A Natural Bond Orbital DonorAcceptor Perspective, (Cambridge: Cambridge University Press) (2005)CrossRefGoogle Scholar
  33. [33]
    M Goto, H Kanno, E Sugaya, Y Osa and H Takayanagi, Analytical Sciences X-ray Structure Analytical Online 20 x39 (2004)CrossRefGoogle Scholar
  34. [34]
    Ö Tamer, S A Tamer, Ö İdil, D Avcı, H Vural and Y Atalay J. Mol. Struct. 1152 399 (2018)ADSCrossRefGoogle Scholar
  35. [35]
    Ö Tamer J. Mol. Struct. 1144 370 (2017)ADSCrossRefGoogle Scholar
  36. [36]
    G Socrates Infrared Characteristic Group Frequencies (New York: Willey) (1980)Google Scholar
  37. [37]
    G Varsanyi Vibrational Spectra of Benzene Derivates (Budapest: Academic Kiaclo) (1973)Google Scholar
  38. [38]
    R M Silverstein G C Bassle and T C Morrill Spectrometric Identifaction of Oganic Compounds (Chister: Willey) (1991)Google Scholar
  39. [39]
    H Milani Moghaddam and M Damchi Jelodar Indian J. Phys. 87 99 (2013)ADSCrossRefGoogle Scholar
  40. [40]
    H Pir, N Günay, D Avcı and Yusuf Atalay Spectrochimica Acta A 96 916 (2012)ADSGoogle Scholar
  41. [41]
    Y Atalay, D Avcı and A Başoğlu Struct. Chem. 19 239 (2008)CrossRefGoogle Scholar
  42. [42]
    T Vijayakumar, I H Joe, C P R Nair and V S Jayakumar Chem. Phys. 343 83 (2008)Google Scholar
  43. [43]
    P Kaatz, E A. Donley and D P. Shelton J. Chem. Phys. 108 849 (1998)ADSCrossRefGoogle Scholar
  44. [44]
    C Adant, M Dupuis and J L Bredas Int. J. Quantum Chem. 56 507 (2004)Google Scholar
  45. [45]
    A Datta and S K Pati, D Davis and K Sreekumar J. Phys. Chem. A 109 4112 (2005)ADSCrossRefGoogle Scholar
  46. [46]
    A Datta, F Terenziani and A Panielli Chem. Phys. Chem. 7 2168 (2006)Google Scholar
  47. [47]
    A Datta and S K Pati Chem. Soc. Rev. 35 1305 (2006)CrossRefGoogle Scholar
  48. [48]
    C Sridevi, N P Selvam, G Shanthi and G Velraj J. Mol. Struct. 1039 40 (2012)Google Scholar
  49. [49]
    C Sridevi and G Velraj Spectrochimica Acta A 107 34 (2013)CrossRefGoogle Scholar
  50. [50]
    Ö Tamer, D Avcı and Y Atalay Spectrochimica Acta A 117 78 (2014)ADSGoogle Scholar
  51. [51]
    Ö Tamer et al. Spectrochimica Acta A 117 13 (2014)ADSCrossRefGoogle Scholar
  52. [52]
    Ö Tamer, B Sarıboğa and İ Ucar Struct. Chem. 23 659 (2012)CrossRefGoogle Scholar
  53. [53]
    F Weinhold, C Landis and Valency Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge: Cambridge University Press) (2005)CrossRefGoogle Scholar
  54. [54]
    H P Gümüş, Ö Tamer, D Avcı and Yusuf Atalay Spectrochimica Acta A 132 183 (2014)ADSCrossRefGoogle Scholar
  55. [55]
    H Pir, N Gunay, Ö Tamer, D Avcı and Y Atalay Spectrochimica Acta A 112 331 (2013)ADSGoogle Scholar
  56. [56]
    H Pir, N Gunay, Ö Tamer, D Avcı, E Tarcan and Y Atalay Mater. Sci. Pol. 31 357 (2013)ADSCrossRefGoogle Scholar
  57. [57]
    K Fukui Science 218 747 (1982)ADSCrossRefGoogle Scholar
  58. [58]
    J Chocholousova, V V Spirko and P Hobza Phys. Chem. Chem. Phys. 6 37 (2000)Google Scholar
  59. [59]
    P Politzer and J S Murray Theor. Chem. Acc. 108 134 (2002)CrossRefGoogle Scholar
  60. [60]
    J S Murray and K Sen: Molecular Electrostatic Potentials, Concepts and Applications, (Amsterdam: Elsevier) (1996)Google Scholar
  61. [61]
    I Alkorta and J J Perez International J. Quantum Chem. 57 123 (1996)CrossRefGoogle Scholar
  62. [62]
    E Scrocco and J Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry (New York: Academic Press) (1978)Google Scholar
  63. [63]
    K Rajalakshmi, S Gunasekaran and S Kumaresan Indian J. Phys. 89 525 (2015)ADSCrossRefGoogle Scholar
  64. [64]
    S Altürk, N Boukabcha and N Benhalima Indian J. Phys. 91 501 (2017)ADSCrossRefGoogle Scholar
  65. [65]
    H Pir, Ö Tamer, D Avcı and Y Atalay Indian J. Phys. 90 79 (2016)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Physics, Art and Science FacultySakarya UniversitySakaryaTurkey

Personalised recommendations