Indian Journal of Physics

, Volume 93, Issue 1, pp 67–73 | Cite as

Generation of W state by combining adiabatic passage and quantum Zeno techniques

  • Chun-Ling ZhangEmail author
  • Wen-Wu Liu
Original Paper


We propose a scheme to prepare W state for three atoms in a cavity via adiabatic passage and quantum Zeno dynamics. Appropriate Rabi frequencies of the classical fields are selected to realize the present scheme. Numerical analysis is showed, which indicates that the scheme is robust against the floating of the pulse delay and laser intensity, and the atomic spontaneous radiation and the cavity decay are efficiently suppressed by engineering adiabatic passage. Moreover, the scheme is more achievable in experiment than other existing schemes. Based on the current experimental technology, this scheme for generation of high-fidelity W state for three atoms can be achieved.


W state Adiabatic passage Quantum Zeno dynamics 


03.67.Bg 42.50.Dv 42.50.Pq 



This work was financially supported by the Foundation of the Fujian Education Department (Grant No. JB14220).


  1. [1]
    S Abdel-Khalek and T A Nofal Physica A 390 2626 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    S Abdel-Khalek, S H A Halawani and A S F Obada Int. J. Theor. Phys. 56 2898 (2017)CrossRefGoogle Scholar
  3. [3]
    R Dermez and S Abdel-Khalek J. Russ. Laser Res. 32 287 (2011)CrossRefGoogle Scholar
  4. [4]
    A S F Obada, S Abdel-Khalek, D A M Abo-Kahla Opt. Commun. 283 4662 (2010)ADSCrossRefGoogle Scholar
  5. [5]
    Y H Chen, Y Xia, Q Q Chen and J Song Phys. Rev. A 91 012325 (2015)ADSCrossRefGoogle Scholar
  6. [6]
    Y H Kang, Y H Chen, Z C Shi, J Song and Y Xia Phys. Rev. A 94 052311 (2016)ADSCrossRefGoogle Scholar
  7. [7]
    Y H Kang, Y H Chen, Z C Shi, B H Huang, J Song and Y Xia Phys. Rev. A 94 022304 (2017)ADSCrossRefGoogle Scholar
  8. [8]
    Y H Kang, B H Huang, P M Lu, Y Xia Laser Phys. Lett. 14 025201 (2017)ADSCrossRefGoogle Scholar
  9. [9]
    J L Wu, X Ji, S Zhang Sci. Rep.  7 46255 (2017)ADSCrossRefGoogle Scholar
  10. [10]
    B H Huang, Y H Chen, Q C Wu, J Song and Y Xia Laser Phys. Lett. 13 052311 (2016)Google Scholar
  11. [11]
    A Cabello Phys. Rev. Lett. 89 100402(2002)ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    H Salih Phys. Rev. A 90 012333 (2014)ADSCrossRefGoogle Scholar
  13. [13]
    M Y Wang and F L Yan Chin. Phys. B 20 120309 (2011)ADSCrossRefGoogle Scholar
  14. [14]
    J X Fang, Y S Lin, S Q Zhu and X F Chen Phys. Rev. A 67 014305 (2003)ADSCrossRefGoogle Scholar
  15. [15]
    S B Zheng Phys. Rev. A 66 014103 (2002)Google Scholar
  16. [16]
    A Cabello Phys. Rev. A 65 032108 (2002)ADSCrossRefGoogle Scholar
  17. [17]
    B S Shi and A Tomita Phys. Lett. A 296 161 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J Joo, Y J Park, S Oh and J Kim New J. Phys. 5 136 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    C F Roos, M Riebe, H Häffner, W Hänsel, J Benhelm, G P Lancaster, C Becher, F Schmidt-Kaler and R Blatt Science 304 1478 (2004)ADSCrossRefGoogle Scholar
  20. [20]
    M Eibl, N Kiesel, M Bourennane, C Kurtsiefer and H Weinfurter Phys. Rev Lett. 92 077901 (2004)ADSCrossRefGoogle Scholar
  21. [21]
    C L Zhang, W Z Li and M F Chen Opt. Commun. 312 269 (2014).ADSCrossRefGoogle Scholar
  22. [22]
    S S Ma Commun. Theor. Phys. 54 521 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    J Zou and X Hu Opt. Commun. 281 5067 (2008)ADSCrossRefGoogle Scholar
  24. [24]
    R Sweke, I Sinayskiy and F Petruccione Phys. Rev. A 87 042323 (2013)ADSCrossRefGoogle Scholar
  25. [25]
    M A Talab, S Guérin and H R Jauslin Phys. Rev. A 72 012339 (2005)ADSCrossRefGoogle Scholar
  26. [26]
    M A Talab, S Guérin, N Sangouard and H R Jauslin Phys. Rev. A 71 023805 (2005)ADSCrossRefGoogle Scholar
  27. [27]
    X Lacour, N Sangouard, S Guérin and H R Jauslin Phys. Rev. A 73 042321 (2006)ADSCrossRefGoogle Scholar
  28. [28]
    A S Zheng, J B Liu and H Y Chen Chin. Phys. Lett. 28 080303 (2011)ADSCrossRefGoogle Scholar
  29. [29]
    Z B Yang, H Z Wu and S B Zheng Chin. Phys. B 19 094205 (2010)ADSCrossRefGoogle Scholar
  30. [30]
    Z Chen, Y H Chen and Y Xia J. Mod. Optic 63 92 (2016)ADSCrossRefGoogle Scholar
  31. [31]
    K Bergmann, H Theuer and B W Shore Rev. Mod. Phys. 70 1003 (1998)ADSCrossRefGoogle Scholar
  32. [32]
    N V Vitanov, K A Suominen and B W Shore J. Phys. B Mol. Opt. Phys. 32 4535 (1999)ADSCrossRefGoogle Scholar
  33. [33]
    B Misra and E C G Sudarshan J. Math. Phys. 18 756 (1977)ADSCrossRefGoogle Scholar
  34. [34]
    P Kwiat, H Weinfurter, T Herzog, A Zeilinger and M A Kasevich Phys. Rev. Lett. 74 4763 (1995)ADSCrossRefGoogle Scholar
  35. [35]
    E W Streed, J Mun, M Boyd, G K Campbell, P Medley, W Ketterle and D E Pritchard Phys. Rev. Lett. 97 260402 (2006)ADSCrossRefGoogle Scholar
  36. [36]
    P Facchi,V Gorini, G Marmo, S Pascazio and E C G Sudarshan Phys. Lett. A 275 12 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P Facchi, S Pascazio, A Scardicchio and L S Schulman Phys. Rev. A 65 012108 (2002)ADSCrossRefGoogle Scholar
  38. [38]
    W A Li and L F Wei Opt. Express 20 13440 (2012)ADSCrossRefGoogle Scholar
  39. [39]
    G Barontini, L Hohmann, F Haas, J Est\(\grave{e}\)ve and J Reichel Science 349 1317 (2015)ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J L Wu, C Song,J Xu ,L Yu, X Ji and S Zhang Quantum Inf. Process. 15 3663 (2016)ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M F Chen, Y F Chen and S S Ma Quantum Inf. Processi 15 1469 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y F Chen and M F Chen Opt. Commun. 364 29 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    W J Shan, Y H Chen, Y Xia and J Song J. Mod. Optic 62 1591 (2015)ADSCrossRefGoogle Scholar
  44. [44]
    P Facchi, G Marmo and S Pascazio J. Phys. Conf. Ser. 196 012017 (2009)Google Scholar
  45. [45]
    Z B Yang, H Z Wu, W J Su and S B Zheng Phys. Rev. A 80 012305 (2009)ADSCrossRefGoogle Scholar
  46. [46]
    U Gaubatz, P Rudecki, S Schiemann and K Bergmann J. Chem. Phys. 92 5363 (1990)ADSCrossRefGoogle Scholar
  47. [47]
    A C Dada, J Leach, G S Buller, M J Padgett and E Andersson Nat. Phys. 7 677 (2011)CrossRefGoogle Scholar
  48. [48]
    J R Kuklinski, U Gaubatz, F T Hioe and K Bergmann Phys. Rev. A 40 6741 (1989)ADSCrossRefGoogle Scholar
  49. [49]
    G S Agarwal Opt. Commun. 2 357 (1970)Google Scholar
  50. [50]
    X F Zhou, Y S Zhang and G C Guo Phys. Lett. A 363 263 (2007)ADSCrossRefGoogle Scholar
  51. [51]
    M Keller, B Lange, K Hayasaka, W Lange and H Walther Nature 431 1075 (2004)ADSCrossRefGoogle Scholar
  52. [52]
    M Keller, B Lange, K Hayasaka, W Lange and H Walther New J. Phys. 6 95 (2004)ADSCrossRefGoogle Scholar
  53. [53]
    A Stute, B Casabone, P Schindler, T Monz, P O Schmidt, B Brandstätter, T E Northup and R Blatt Nature 485 482 (2012)ADSCrossRefGoogle Scholar
  54. [54]
    J R Buck and H J Kimble Phys. Rev. A 67 033806 (2003)ADSCrossRefGoogle Scholar
  55. [55]
    A B Mundt, A Kreuter, C Becher, D Leibfried, J Eschner, F S Kaler and R Blatt Phys. Rev. Lett. 89 103001 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of Information EngineeringYango UniversityFuzhouChina
  2. 2.Spatial Information Engineering Research Centre of Fujian ProvinceYango UniversityFuzhouChina

Personalised recommendations