Advertisement

Indian Journal of Physics

, Volume 92, Issue 12, pp 1533–1539 | Cite as

Incorporation of MoS2 nanoflakes into poly(3-hexylthiophene)/n-type Si devices to improve the rectification behavior and optoelectronic performance

  • Chang-Lin Wu
  • Yow-Jon Lin
Original Paper
  • 50 Downloads

Abstract

This study determines the effect of incorporating MoS2 nanoflakes into poly(3-hexylthiophene) (P3HT) on the electrical conduction mechanisms using the rectification current–voltage characteristics of P3HT/n-type Si devices. It is shown that the forward-voltage current for P3HT/n-type Si devices is limited by the combined effect of thermionic emission and space-charge-limited current conduction. However, carrier transport for P3HT:MoS2/n-type Si devices in the forward-voltage region is almost dominated by thermionic emission. Incorporation of MoS2 nanoflakes into P3HT modifies the P3HT-Si interface and the values for the carrier mobility in the P3HT layer and the external quantum efficiency of the P3HT/n-type Si devices are significantly increased, which improves the rectification and optoelectronic performance of P3HT:MoS2/n-type Si devices.

Keywords

Heterojunction Polymer Electrical properties Thin films Two-dimensional materials 

PACS Nos.

72.80.Cw Elemental semiconductors 72.80.Tm Composite materials 73.40.Lq Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions 73.90. + f Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures 

Notes

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of Grants.

References

  1. [1]
    J C Nolasco, R Cabré, J Ferré-Borrull, L F Marsal, M Estrada and J Pallarès J. Appl. Phys. 107 044505 (2010)ADSCrossRefGoogle Scholar
  2. [2]
    N Rujisamphan, T Supasai and T Dittrich Appl. Phys. A 122 77 (2016)ADSCrossRefGoogle Scholar
  3. [3]
    Z Yuan, J Yu, W Ma and Y Jiang Appl. Phys. A 106 511 (2012)ADSGoogle Scholar
  4. [4]
    N J Pinto, K V Carrasquillo, C M Rodd and R Agarwal Appl. Phys. Lett. 94 083504 (2009)ADSCrossRefGoogle Scholar
  5. [5]
    Y J Lin and Y M Chin J. Appl. Phys. 116 173709 (2014)ADSCrossRefGoogle Scholar
  6. [6]
    Lin Y J and Chin Y M Appl. Phys. Lett. 103 173301 (2013)ADSCrossRefGoogle Scholar
  7. [7]
    J J Zeng, C L Tsai and Y J Lin Synth. Met. 162 1411 (2012)CrossRefGoogle Scholar
  8. [8]
    J H Lin, J J Zeng, Y C Su and Y J Lin Appl. Phys. Lett. 100 153509 (2012)ADSCrossRefGoogle Scholar
  9. [9]
    Lin Y J and Su Y C J. Appl. Phys. 111 073712 (2012)ADSCrossRefGoogle Scholar
  10. [10]
    G D Sharma, P Suresh, P Balaraju, S K Sharma and M S Roy Synth. Met. 158 400 (2008)CrossRefGoogle Scholar
  11. [11]
    Y R Park, Y J Lee, C J Yu and J H Kim J. Appl. Phys. 108 044508 (2010)ADSCrossRefGoogle Scholar
  12. [12]
    A J Moulé, D Neher and S T Turner Adv. Polym. Sci. 265 181 (2014)CrossRefGoogle Scholar
  13. [13]
    C Y Liu, Z C Holman and U R Kortshagen Nano Lett. 9 449 (2009)Google Scholar
  14. [14]
    V V Brus, M Zellmeier, X Zhang, S M Greil, M Gluba, A J Tofflinger, J Rappich and N H Nickel Org. Electron. 14 3109 (2013)CrossRefGoogle Scholar
  15. [15]
    R Mauer, M Kastler and F Laquai Adv. Funt. Mater. 29 2085 (2010)CrossRefGoogle Scholar
  16. [16]
    A Tsumura, H Koezuka and T Ando Appl. Phys. Lett. 49 1210 (1986)Google Scholar
  17. [17]
    C Poelking, K Daoulas, A Troisi and D Andrienko Adv. Polym. Sci. 265 139 (2014)CrossRefGoogle Scholar
  18. [18]
    Y M Chin, Y J Lin and D S Liu Thin Solid Films 548 453 (2013)ADSCrossRefGoogle Scholar
  19. [19]
    W J E Beek, M M Wienk and R A J Janssen Adv. Funct. Mater 16 1112 (2006)CrossRefGoogle Scholar
  20. [20]
    H Z Lin and Y J Lin Microelectron. Reliab. 65 60 (2016)CrossRefGoogle Scholar
  21. [21]
    H Z Lin and Y J Lin Synth. Met. 220 538 (2016)CrossRefGoogle Scholar
  22. [22]
    M M Perera, M W Lin, H J Chuang, B P Chamlagain, C Wang, X Tan, M M C Cheng, D Tománek and Z Zhou ACS Nano 7 4449 (2013)CrossRefGoogle Scholar
  23. [23]
    M L Tsai, S H Su, J K Chang, D S Tsai, C H Chen, C I Wu, L J Li, L J Chen and J H He ACS Nano 8 8317 (2014)CrossRefGoogle Scholar
  24. [24]
    T Takahashi, H Tokailin, S Suzuki, T Sagawa and I Shirotani Phys. Rev. B 29 1105 (1984)ADSCrossRefGoogle Scholar
  25. [25]
    L Li, Y Yu, G J Ye, Q Ge, X Ou, H Wu, D Feng, X H Chen and Y Zhang Nature Nanotechnology 9 372 (2014)ADSCrossRefGoogle Scholar
  26. [26]
    J H Kim, T H Kim, H Lee, Y R Park, W Choi and C J Lee AIP Advances 6 065106 (2016)ADSCrossRefGoogle Scholar
  27. [27]
    Y J Lin, T H Su and S M Chen J. Mater. Sci.: Mater. Electron. 28 14430 (2017)Google Scholar
  28. [28]
    Y J Lin and T H Su J. Mater. Sci.: Mater. Electron. 28 10106 (2017)Google Scholar
  29. [29]
    L F Marsal, J Pallares, X Correig, J Calderer and R Alcubilla Semicond. Sci. Technol. 11 1209 (1996)ADSCrossRefGoogle Scholar
  30. [30]
    E H Hall Amer. J. Math. 2 287 (1879)MathSciNetCrossRefGoogle Scholar
  31. [31]
    D K Schroder Semiconductor Material and Device Characterization (New York: John Wiley & Sons) (1998)Google Scholar
  32. [32]
    D A Neamen Semiconductor Physics & Devices (Boston: McGraw-Hill) (2002)Google Scholar
  33. [33]
    M R Laskar, L Ma, S Kannappan, P S Park, S Krishnamoorthy, D N Nath, W Lu, Y Wu and S Rajan Appl. Phys. Lett. 102 252108 (2013)ADSCrossRefGoogle Scholar
  34. [34]
    R J Patel, T B Tighe, I N Ivanov and M A Hickner J. Polymer Science, Part B: Polymer Physics 49 1269 (2011)ADSCrossRefGoogle Scholar
  35. [35]
    Y J Lin, H Z Lin, N H Yan, Z H Tang and H C Chang Appl. Phys. A 122 974 (2016)ADSCrossRefGoogle Scholar
  36. [36]
    T H Su and Y J Lin Appl. Phys. Lett. 108 033103 (2016)ADSCrossRefGoogle Scholar
  37. [37]
    A A El-Shazly, H S Metwally, A M Farid, H A Hussainey and A A M Farag Indian J. Pure Appl. Phys. 36 753 (1998)Google Scholar
  38. [38]
    M Ilhan J. Mater. Electron. Dev. 1 15 (2015)Google Scholar
  39. [39]
    M E Aydin and F Yakuphanoglu Microelectron. Reliab. 52 1350 (2012)CrossRefGoogle Scholar
  40. [40]
    J Ren, D Yan, Y Zhai, W Mou and X Gu Microelectron. Reliab. 61 82 (2016)CrossRefGoogle Scholar
  41. [41]
    E Guo, Z Zeng, Y Zhang, X Long, H Zhou and X Wang Microelectron. Reliab. 62 63 (2016)CrossRefGoogle Scholar
  42. [42]
    D Sri Silpa, P Sreehith, V Rajagopal Reddy and V Janardhanam Indian J. Phys. 90 399 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    K Shanthi Latha and V Rajagopal Reddy Indian J. Phys. 91 743 (2017)ADSCrossRefGoogle Scholar
  44. [44]
    S Sönmezoğlu Appl. Phys. Express 4 104104 (2011)ADSCrossRefGoogle Scholar
  45. [45]
    S Sönmezoğlu, S Şenkul, R Taş, G Çankaya and M Can Solid State Sci. 12 706 (2010)ADSCrossRefGoogle Scholar
  46. [46]
    J Maeng, M Jo, S J Kang, M K Kwon, G Jo, T W Kim, J Seo, H Hwang, D Y Kim, S J Park and T Lee Appl. Phys. Lett. 93 123109 (2008)ADSCrossRefGoogle Scholar
  47. [47]
    R Scheer J. Appl. Phys. 105 104505 (2009)ADSCrossRefGoogle Scholar
  48. [48]
    A S Sarkar and S K Pal J. Phys. Chem. C 121 21945 (2017)CrossRefGoogle Scholar
  49. [49]
    D Jariwala, S L Howell, K S Chen, J Kang, V K Sangwan, S A Filippone, R Turrisi, T J Marks, L J Lauhon and M C Hersam Nano Lett. 16 497 (2016)CrossRefGoogle Scholar
  50. [50]
    A Mekki, A Dere, K Mensah-Darkwa, A Al-Ghamdi, R K Gupta, K Harrabi, W A Farooq, F El-Tantawy and F Yakuphanoglu Synth. Met. 217 43 (2016)CrossRefGoogle Scholar
  51. [51]
    Y J Lin Sens. Actuators A 260 62 (2017)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Changhua University of EducationChanghuaTaiwan, ROC
  2. 2.Institute of PhotonicsNational Changhua University of EducationChanghuaTaiwan, ROC

Personalised recommendations