Indian Journal of Physics

, Volume 92, Issue 12, pp 1525–1532 | Cite as

Modelling of X-ray patterns using Fourier transforms: application to nanomaterials

  • S. R. Madhuri
  • N. S. Namitha
  • M. B. Kusuma Urs
  • G. K. Gowtham
  • Thejas G. Urs
  • R. SomashekarEmail author
Original Paper


Stucture of crystalline materials is obtained by studying the diffraction patterns using electromagnetic radiations like X-rays, electron and neutron beams. These patterns are essentially Fourier transforms of the sample space. As the diffraction pattern corresponds to reciprocal lattice of the atomic arrangement, Fourier transform can be used to convert the data from real space to reciprocal space. Thus, an image of real space when transformed to Fourier space should resemble the X-ray diffraction profile. For this, we have developed an algorithm for image processing using Fourier transform employing GNU Octave. In essence we would like to investigate the Fourier transform of several two-dimensional ordered systems which mimic two dimensional nanostructures in general. For this, we have built several two-dimensional models to study the ordered patterns with various shapes of the repeating entity like circular, rectangle, squares, benzene shape along irregular patterns. We study the variation in diffraction patterns that are in transformed space and compare them inorder to simulate with two dimensional images.


Fourier transform Microstructure Two-dimensional modeling XRD 


02.30.Nw 61.72.-y 61.05.cp 61.72.Dd 



Authors would like to thank UGC for UPE and CPEPA projects for University of Mysore.


  1. [1]
    L E Levine, P Geantil, B C Larson, J Z Tischler, M E Kassner, W Liu J. Appl. Crystallogr. 45(2) 157 (2012)CrossRefGoogle Scholar
  2. [2]
    P Scherrer Nachr. Ges. Wiss. Göettingen, Math-Phys Kl 2 96 (1918)Google Scholar
  3. [3]
    B E Warren, B L Averbach J. Appl. Phys. 21(6) 595 (1950)ADSCrossRefGoogle Scholar
  4. [4]
    P Scardi, Y H Dong, M Leoni Mater. Sci. Forum 378 132 (2001)CrossRefGoogle Scholar
  5. [5]
    M Geeta, S Sharma, A S Panwar, M P Gururajan Resonance 20(1) 55 (2015)CrossRefGoogle Scholar
  6. [6]
    V Balakrishnan Resonance, 1(10) 6 (1996)CrossRefGoogle Scholar
  7. [7]
    J S Hansen GNU Octave: Beginner’s Guide: Become a Proficient Octave User by Learning this High-level Scientific Numerical Tool from the Ground Up (Birmingham - Mumbai: Packt Publishing Ltd) (2011)Google Scholar
  8. [8]
    P Hiscocks Using XFig. Dessertation (Ryerson Polytechnic University) (2001)Google Scholar
  9. [9]
    J Ge, X Zeng, X Tao, X Li, Z Shen, J Yun, J Chen J. Appl. Polym. Sci. 118(3) 1507 (2010)Google Scholar
  10. [10]
    R M Mariano, P H Picciani, R C Nunes, L L Visconte J. Appl. Polym. Sci. 120(1) 458 (2011)CrossRefGoogle Scholar
  11. [11]
    J An, Q Luo, X Yuan, D Wang, X Li J. Appl. Polym. Sci. 120(6) 3180 (2011)CrossRefGoogle Scholar
  12. [12]
    V Cauda, G Canavese, S Stassi J. Appl. Polym. Sci 41667 (1-14) (2015)Google Scholar
  13. [13]
    H Zhang, X Zhang, X Sun, Y. Ma Sci. Rep. 3 3534 (2013)ADSCrossRefGoogle Scholar
  14. [14]
    G Taglieri, C Mondelli, V Daniele, E Pusceddu, A Trapananti Adv. Mater. Phys. Chem. 3 108–112 (2013)CrossRefGoogle Scholar
  15. [15]
    J Cook, S Rhyans, L Roncase, G Hobson, C C Luhrs Inorganics 2(3) 377–395 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  • S. R. Madhuri
    • 1
  • N. S. Namitha
    • 1
  • M. B. Kusuma Urs
    • 1
  • G. K. Gowtham
    • 2
  • Thejas G. Urs
    • 3
  • R. Somashekar
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsUniversity of MysoreMysuruIndia
  2. 2.Department of Physics, Yuvaraja’s CollegeUniversity of MysoreMysuruIndia
  3. 3.Center for Materials ScienceUniversity of MysoreMysuruIndia
  4. 4.Department of PhysicsRegional Institute of EducationManasagangotri, MysuruIndia

Personalised recommendations