Indian Journal of Physics

, Volume 92, Issue 11, pp 1413–1418 | Cite as

Influence of Ag on the properties of Ag combined Nb-doped TiO2 (TNO) thin films deposited by a co-sputtering process

  • N. L. H. HoangEmail author
  • M. Q. Luu
  • V. T. Pham
  • M. H. Nguyen
  • T. L. Nguyen
  • T. H. Pham
  • C. H. Hoang
  • H. L. Nguyen
Original Paper


Nb-doped TiO2 (TNO) is known as a multifunctional thin film. In this study, Ag was added to TNO thin films via a co-sputtering methodology to improve the properties of the films. X-ray diffraction, scanning electron microscopy and Raman spectroscopy were used to characterize the samples. The UV–Vis spectra indicated that the transparency of the samples decreased as the Ag content increased. The photocatalytic properties of the co-sputtered films were evaluated by photodegrading a methylene blue (MB) solution under ultraviolet (UV) radiation using back-side illumination; i.e., the UV light reaches the thin film through the Corning glass instead of the MB solution. By adding Ag into TNO films, their photocatalytic property significantly improved. The 2-min Ag-TNO film showed a maximum photocatalytic efficiency (k = 0.034 min−1) and good transparency of 70% in the visible range. Nevertheless, adding too much Ag led to a negative photocatalytic performance. The results suggested that the co-sputtering process is an efficient method to combine Ag with TNO thin films to improve their photocatalytic performance.


Ag co-sputtering TNO thin film Photocatalytic Back-side illumination 


82.33.Pt 82.50.Hp 82.65.+r 82.80.Gk 



This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2014.78. The authors thank the Center for Materials Science—Faculty of Physics and Nano and Energy Center (NEC) of VNU University of Science for supporting the related equipment.


  1. [1]
    Y Furubayashi, H Hitosugi, Y Yamamoto, K Inaba, G Kinoda, Y Hirose, T Shimada and T Hasegawa Appl. Phys. Lett. 86 252101 (2005)Google Scholar
  2. [2]
    N L H Hoang, N Yamada, T Hitosugi, J Kasai, S Nakao, T Shimada and T Hasegawa Appl. Phys. Express 1 115001 (2008)ADSCrossRefGoogle Scholar
  3. [3]
    D S Bhachu, S Sathasivam, G Sankar, D O Scanlon, G Cibin, C J Carmalt, I P Parkin, G W Watson, S M Bawaked, A Y Obaid, S Al-Thabaiti and S N Basahel Adv. Funct. Mater. 24 5075 (2014)CrossRefGoogle Scholar
  4. [4]
    S Seegera, K Ellmerb, M Weisea, D Gogovac, D Abou-Rasb and R Mientusa Thin Solid Films 605 44 (2016)ADSCrossRefGoogle Scholar
  5. [5]
    J P Niemelä, H Yamauchi and M Karppinen Thin Solid Films 551 19 (2014)ADSCrossRefGoogle Scholar
  6. [6]
    Handbook of transparent conductors (eds.) D S Ginley, H Hosono, D C Paine (America: Springer) p 8 (2010)Google Scholar
  7. [7]
    S Sarmah and A Kumar Indian J. Phys. 85 715 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    A R Khataee and M B Kasiri J. Mol. Catal. A: Chem. 328 8 (2010)CrossRefGoogle Scholar
  9. [9]
    N M Hieu, N T Lan, N B Loc, N T T Hang, N T Tien, P V Thanh, L M Quynh, N H Luong and N L H Hoang J. Electron. Mater. 46 3726 (2017)ADSCrossRefGoogle Scholar
  10. [10]
    L M Quynh, N T Tien, N B Loc, V Q Tho, N T Lan, P V Thanh, N M Hieu, N L H Hoang and N H Luong J. Sci.: Adv. Mater. Dev. 2 392 (2017)Google Scholar
  11. [11]
    J Schneider, M Matsuoka, M Takeuchi, J Zhang, Y Horiuchi, M Anpo and D W Bahnemann Chem. Rev. 114 9919 (2014)CrossRefGoogle Scholar
  12. [12]
    P J Kelly, G T West, M Ratova, L Fisher, S Ostovarpour and J Verran Molecules 19 16327 (2014)CrossRefGoogle Scholar
  13. [13]
    H K Chen, W F Chen, P Koshy, E Adabifiroozjaei, R Liu, L R Sheppard and C C Sorrell J. Taiwan Inst. Chem. Eng. 67 202 (2016)CrossRefGoogle Scholar
  14. [14]
    G L Chiarello, M H Aguirre and E Selli J. Catal. 273 182 (2010)Google Scholar
  15. [15]
    H Liu, Z Lu, L Yue, J Liu, Z Gan, C Shu, T Zhang, J Shi and R Xiong Appl. Surf. Sci. 257 9355 (2011)ADSCrossRefGoogle Scholar
  16. [16]
    S Kment, H Kmentova, P Kluson, J Krysa, Z Hubicka, V Cirkva, I Gregora, O Solcova and L Jastrabik J. Colloid Interface Sci. 348 198 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    C G Wu, C C Chao and F T Kuo Catal. Today 97 103 (2004)CrossRefGoogle Scholar
  18. [18]
    H M Coleman, K Chiang and R Amal Chem. Eng. J. 113 65 (2005)Google Scholar
  19. [19]
    J Prakash, P Kumar, R A Harris, C Swart, J H Neethling, A J Vuuren and H C Swart, Nanotechnology 27 355707 (2016)CrossRefGoogle Scholar
  20. [20]
    X Hou, H Ma, F Liu, J Deng, Y Ai, X Zhao, D Mao, D Li and B Liao J. Hazard. Mater. 299 59 (2015)CrossRefGoogle Scholar
  21. [21]
    B Xin, L Jing, Z Ren, B Wang and H Fu J. Phys. Chem. B 109 2805 (2005)CrossRefGoogle Scholar
  22. [22]
    B Yu, K M Leung, Q Guo, W M Lau and J Yang Nanotechnology 22 115603 (2011)Google Scholar
  23. [23]
    S Carbone, L V Antisari, F Gaggia, L Baffoni, D D Gioia, G Vianelloa and P Nannipieri J. Hazard. Mater. 280 89 (2014)CrossRefGoogle Scholar
  24. [24]
    B T Bui, A T Dang, T C Than, M H Nguyen, N L H Hoang, V D Bui, Q H Nguyen, V T Pham, C H Hoang and T Nguyen-Tran J. Electron. Mater. 45 2442 (2016)ADSCrossRefGoogle Scholar
  25. [25]
    N M Nguyen, M Q Luu, M H Nguyen, D T Nguyen, V D Bui, T T Truong, V T Pham and T Nguyen-Tran J. Electron. Mater. 46 3667 (2017)ADSCrossRefGoogle Scholar
  26. [26]
    G Wan, S Wang, X Zhang, M Huang, Y Zhang, W Duan and L Yi Appl. Surf. Sci. 357 622 (2015)ADSCrossRefGoogle Scholar
  27. [27]
    S Umrao, P Sharma, A Bansal, R Sinha, R K Singh and A Srivastva RSC Adv. 5 51790 (2015)CrossRefGoogle Scholar
  28. [28]
    P C Ricci, C M Carbonaro, A Geddo Lehmann, F Congiu, B Puxeddu, G Cappelletti and F Spadavecchia J. Alloys Compd. 561 109 (2013)CrossRefGoogle Scholar
  29. [29]
    L M Quynh, N T Tien, P V Thanh, N M Hieu, S C Doanh, N T Thuat, N V Tuyen, N H Luong and N L H Hoang Physica B: Condens. Matter 532 200 (2018)ADSGoogle Scholar
  30. [30]
    I M Arabatzis, T Stergiopoulos, M C Bernard, D Labou, S G Neophytides and P Falaras Appl. Catal. B: Environ. 42 187 (2003)Google Scholar
  31. [31]
    G I N Waterhouse, G A Bowmaker and J B Metson Phys. Chem. Chem. Phys. 3 3838 (2001)CrossRefGoogle Scholar
  32. [32]
    S Sen, S Mahanty, S Roya, O Heintz, S Bourgeois and D Chaumont Thin Solid Films 474 245 (2005)ADSCrossRefGoogle Scholar
  33. [33]
    M Dobromir, R Apetrei, A V Rogachev, D L Kovalenko and D Luca1 Adv. Mater. Res. 1117 139 (2015)Google Scholar
  34. [34]
    Y Yang, J Wen, J Wei, R Xiong, J Shi and C Pan ACS Appl. Mater. Interfaces 5 6201 (2013)CrossRefGoogle Scholar
  35. [35]
    B N Joshi, H Yoon, M F A M van Hest and S S Yoon J. Am. Ceram. Soc. 96 2623 (2013)CrossRefGoogle Scholar
  36. [36]
    S Dermici, T Dikici, M Yukddaskal, S Gultekin, M Toparli and E Celik Appl. Surf. Sci. 390 591 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Nano and Energy CenterVNU University of ScienceHanoiVietnam
  2. 2.Faculty of PhysicsVNU University of ScienceHanoiVietnam

Personalised recommendations