Investigating of structural, morphology, optical, transport and magnetic properties of Mg1−xCuxO

  • S. A. GadEmail author
  • G. M. El Komy
  • A. M. Moustafa
  • A. A. Ward
Original Paper


Effect of Cu2+ content on different properties was investigated. Mg1−xCuxO (0.05 ≤ x ≤ 0.2) powder was prepared via solid-state reaction. The samples were examined by X-ray diffraction, and the results were analyzed by using Full Prof program by employing Rietveld refinement technique. The results showed that samples with Cu content up to x = 0.15 had a single phase of MgO rock salt structure type and for x = 0.2 two phases were detected, namely MgO rock salt structure and Cu2O cuprite cubic phase. Also, it was found a small increase in the lattice constants with increasing the Cu content. Moreover, the crystallite size was found to decrease with increasing the Cu concentration. The morphology was studied by transmission electron microscopy. The optical energy gap was calculated, and it was found that it has two values. The energy gaps decreased with increasing the Cu content. The dielectric constant ε′, the loss factor tan δ and conductivity increased with increasing Cu concentration. This increase can be directly related to the increase in the concentration of charge carriers and interfacial polarization effects. The saturation magnetization and the retentivity were found to decrease with the increase in Cu concentrations, but the coercivity increased with increasing Cu content.


Crystal structure Optical properties Dielectric properties Magnetic properties 


61.50.−f 78.20.−e 77.22.−d 75.50.Pp 


  1. [1]
    G Spoto, E N Gribov, G Ricchiardi et al. Prog. Surf. Sci. 76 71 (2004)ADSCrossRefGoogle Scholar
  2. [2]
    K Kaviyarasu and P A Devarajan Der Pharma Chem. 3 248 (2011)Google Scholar
  3. [3]
    S Suresh and D Arivuoli Dig. J. Nanomater. Biostruct. 6 1597 (2011)Google Scholar
  4. [4]
    F Gu, S F Wang, M K Lü et al. J. Cryst. Growth 260 507 (2004)ADSCrossRefGoogle Scholar
  5. [5]
    B Nagappa and G T Chandrappa Microporous Mesoporous Mater. 106 212 (2007)CrossRefGoogle Scholar
  6. [6]
    S M Maliyekkal, K R Antony and T Pradeep Sci. Total Environ. 408 2273 (2010)ADSCrossRefGoogle Scholar
  7. [7]
    K V Rao and C S Sunandana J. Mater. Sci. 43 146 (2008)ADSCrossRefGoogle Scholar
  8. [8]
    V R Orante-Barrn, L C Oliveira, J B Kelly et al. J. Lumin. 131 1058 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    I EAgranovski, A YIlyushechkin, I S Altman, T E Bostrom and M Choi Physica C 1 (434) 115 (2006)Google Scholar
  10. [10]
    T Mathews, R Subasri and O M Sreedharan Solid State Ionics 148 135 (2002)CrossRefGoogle Scholar
  11. [11]
    N C Selvam, R T Kumar, L J Kennedy and J J Vijaya J. Alloys Compd. 509 9809 (2011)CrossRefGoogle Scholar
  12. [12]
    L C Oliveira, E D Milliken and E G Yukihara J. Lumin. 133 211 (2013)CrossRefGoogle Scholar
  13. [13]
    K D Bhatte, D N Sawant, K M Deshmukh and B M Bhanage Particuology 1 384 (2012)CrossRefGoogle Scholar
  14. [14]
    R Kumar, A Subramania, N T K Sundaram, G V Kumar and I Baskaran J. Membr. Sci. 300 104 (2007)CrossRefGoogle Scholar
  15. [15]
    F Granados-Correa, J Bonifacio-Mart´ınez, V H Lara, P Bosch and S Bulbulian Appl. Surf. Sci. 254 4688 (2008)ADSCrossRefGoogle Scholar
  16. [16]
    J M Hanlon, L Bravo Diaz, G Balducci, B A Stobbs, M Bielewski et al. Cryst. Eng. Commun. 17 5672 (2015)CrossRefGoogle Scholar
  17. [17]
    M R Bindhu, M Umadevi, M Kavin Micheal, M VArasu and N Abdullah Al-Dhabi Mater. Lett. 166 19 (2016)Google Scholar
  18. [18]
    K Krishnamoorthy, G Manivannan, S J Kim, K Jeyasubramanian and M Premanathan J. Nanopart. Res. 14 (2012)Google Scholar
  19. [19]
    R Darvishi Cheshmeh Soltani, M Safari and M Mashayekhi Ultrason 30 123 (2016)Google Scholar
  20. [20]
    N Salehifar, Z Zarghami and M Ramezani Mater. Lett. 167 226 (2016)Google Scholar
  21. [21]
    Patent: Jr E Carnall and S E Hatch, Magnesium oxide infrared transmitting optical elements, US 3236595 A (1966)Google Scholar
  22. [22]
    D C Harris Infrared Phys. Technol. 39 185 (1998)ADSCrossRefGoogle Scholar
  23. [23]
    T Misawa, Y Moriyoshi, Y Yajima, S Takenouchi and T Ikegami Ceram. J. Ceram. Soc. Jpn. 107 343 (1999)CrossRefGoogle Scholar
  24. [24]
    L M Chen, X M Sun, Y N Liu and Y D Li Appl. Catal. A. Gen. 265 123 (2004)CrossRefGoogle Scholar
  25. [25]
    M Jafarbegloo, A Tarlani, A Wahid Mesbah, J Muzart and S Sahebdelfar Catal. Lett. 146 238 (2016)Google Scholar
  26. [26]
    R Zanganeh, M Rezaei and A Zamaniyan Adv. Powder Technol. 3 1111 (2014)CrossRefGoogle Scholar
  27. [27]
    E Florez, P Fuentealba and F Mondragón Surf. Catal. Today 133 216 (2008)CrossRefGoogle Scholar
  28. [28]
    Y X Li and K J Klabunde Langmuir 71 388 (1991)Google Scholar
  29. [29]
    V Štengl, S Bakardjieva, M Mǎríková, P Bezdička and J Šubrt Mater. Lett. 57 3998 (2003)Google Scholar
  30. [30]
    M B Gawande, P S Branco, K Parghi et al. Catal. Sci. Technol. 1 1653 (2011)CrossRefGoogle Scholar
  31. [31]
    H Cui, X Wu, Y Chen, J Zhang and R I Boughton Mater. Res. Bull. 61 511 (2015)CrossRefGoogle Scholar
  32. [32]
    F G Kuang, X Y Kuang, S Y Kang, Z H Wang and A J Mao Chem. Phys. Lett. 621 52 (2015)ADSCrossRefGoogle Scholar
  33. [33]
    P Thomson, D E Cox and J M Hasting J. Appl. Cryst. 20 79 (1987)CrossRefGoogle Scholar
  34. [34]
    L Li, X Lin, G Li and H Inomata J. Mater. Res. 16 3207 (2001)ADSCrossRefGoogle Scholar
  35. [35]
    F Urbach Phys. Rev. 92 1324 (1953)ADSCrossRefGoogle Scholar
  36. [36]
    P D Fochs Proc. Phys. Soc. B 69 70 (1956)ADSCrossRefGoogle Scholar
  37. [37]
    J Liu, Y Lu, X Yang and X Yu J. Alloys Compd. 496 261 (2010)CrossRefGoogle Scholar
  38. [38]
    A Asha Radhakrishnan and B Baskaran Beena Indian J. Adv. Chem. Sci. 2 158 (2014)Google Scholar
  39. [39]
    R Dalven Phys. Rev. B 8 6033 (1973)Google Scholar
  40. [40]
    W L Waren, G E Pike, K Vanheusden, D Domos and B A Tuttle J. Appl. Phys. 79 9250 (1996)Google Scholar
  41. [41]
    M L Hassan, S M Fadel, A A Ward, C M Moorefield and G R Newkome Polym. Compos. 37 2734 (2016)Google Scholar
  42. [42]
    S A Gad, A M Moustafa and A A Ward J. Inorg. Organomet. Polym. 25 1077 (2015)CrossRefGoogle Scholar
  43. [43]
    H P De Oliveira, M VB dos Santos, C G dos Santos and C P de Melo, Mater. Charact. 50 223 (2003)CrossRefGoogle Scholar
  44. [44]
    A F Ali, M L Hassan, A A Ward and E M El-Giar Polym. Compos. 38 893 (2017)Google Scholar
  45. [45]
    K A Mauritz Macromolecules 22 4483 (1989)ADSCrossRefGoogle Scholar
  46. [46]
    D K Pradhan, R N P Choudhary and B K Samantaray Int. J. Electochem. Sci. 3 597 (2008)Google Scholar
  47. [47]
    B Deb, S Bhattacharya and A Gosh Europhys. Lett. 3 37005 (2011)ADSCrossRefGoogle Scholar
  48. [48]
    A M Khalil, Mohammad L Hassan and A A Ward Carbohydr. Polym. 157 503 (2017)CrossRefGoogle Scholar
  49. [49]
    J M D Coey, M Venkatesan and C B Fitzgerald Nat. Mater. 4173 (2005)Google Scholar
  50. [50]
    Y M Sun Ph.D. Thesis (University of Science and Technology of China) (2000)Google Scholar
  51. [51]
    U Koch, A Fojtik and H Henglein Chem. Phys. Lett. 122 507 (1985)Google Scholar
  52. [52]
    L Spanhel and M A Anderson J. Am. Chem. Soc. 113 2826 (1991)CrossRefGoogle Scholar
  53. [53]
    J G Zhu and C Park Mater. Today 9 36 (2006)CrossRefGoogle Scholar
  54. [54]
    L Guodong, J Shulin, Y Liangliang, F Guangtao and Y Changhui J. Phys. Condens. Matter 22 046002 (2010)Google Scholar
  55. [55]
    C Martínez-Boubeta, J I Beltrán, L Balcells, Z Konstantinović, S Valencia, D Schmitz et al. Phys. Rev. B 82 024405 (2010)Google Scholar
  56. [56]
    C M Araujo, M Kapilashrami, X Jun, O D Jayakumar, S Nagar et al. Appl. Phys. Lett. 96 232505 (2010)ADSCrossRefGoogle Scholar
  57. [57]
    J Li, Y Jiang, Y Li, D Yang, Y Xu and M Yan Appl. Phys. Lett. 102 072406 (2013)ADSCrossRefGoogle Scholar
  58. [58]
    F Wang, Z Pang, L Lin, S Fang, Y Dai and S Han Phys. Rev. B 80 (2009)Google Scholar
  59. [59]
    T Uchino and T Yoko Phys. Rev. B 85 012407 (2012)ADSCrossRefGoogle Scholar
  60. [60]
    A Droghetti, C D Pemmaraju and S Sanvito Phys. Rev. B 81 (2010)Google Scholar
  61. [61]
    N Kumar, D Sanyal and A Sundaresan Chem. Phys. Lett. 477 360 (2009)ADSCrossRefGoogle Scholar
  62. [62]
    S Xie, X Han, Q Kuang, Y Zhao, Z Xie and L Zheng J. Mater. Chem. 21 7263 (2011)CrossRefGoogle Scholar
  63. [63]
    L Balcells, J I Beltrán, C Martínez-Boubeta, Z Konstantinović, J Arbiol and B Martínez Appl. Phys. Lett. 97 252503 (2010)ADSCrossRefGoogle Scholar
  64. [64]
    G Feng, S Van Dijken, J F Feng, J M D Coey, T Leo and D J Smith J. Appl. Phys. 105 033916 (2009)ADSCrossRefGoogle Scholar
  65. [65]
    K Mizunuma, M Yamanouchi, H Sato, S Ikeda, S Kanai et al. Appl. Phys. Express 6 063002 (2013)ADSCrossRefGoogle Scholar
  66. [66]
    K Tamanoi, M Sato, M Oogane, Y Ando, T Tanaka et al. J. Magn Magn. Mater. 320 2959 (2008)ADSCrossRefGoogle Scholar
  67. [67]
    A Singhala, S N Acharya, A K Tyagia, P K Mannab and S M Yusuf Mater. Sci. Eng. B 153 (1–3) 47 (2008)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • S. A. Gad
    • 2
    Email author
  • G. M. El Komy
    • 1
  • A. M. Moustafa
    • 2
  • A. A. Ward
    • 3
  1. 1.Physics Division, Electron Microscope and Thin Films DepartmentNational Research CentreGizaEgypt
  2. 2.Physics Division, Solid State Physics DepartmentNational Research CentreGizaEgypt
  3. 3.Physics Division, Microwave Physics and Dielectrics DepartmentNational Research CentreGizaEgypt

Personalised recommendations