Advertisement

Inclusion of an anionic dye in the molecular structure of potassium dihydrogen phosphate crystal for SSDL applications

  • P. R. DeepthiEmail author
  • Anu Sukhdev
  • P. Mohan Kumar
  • J. Shanthi
  • B. N. Pavithra
  • B. C. Hemaraju
Original Paper
  • 6 Downloads

Abstract

Single crystals of pure potassium dihydrogen phosphate (KDP) and Reactive Orange 16 or Remazol Brilliant Orange dye-doped (0.1, 0.2 and 0.3 mol%) KDP single crystals were grown by slow evaporation method with the vision to improve the properties of pure KDP crystal. Enhanced dielectric, optical, thermal and NLO properties have been achieved by dye doping. The crystallinity and phase purity of the grown crystals were analysed by PXRD. The identification of various functional groups and dye incorporation in the grown crystals was confirmed qualitatively by FTIR analysis. The linear optical study on pure and dye-doped crystals was carried out using UV–Vis–NIR spectroscopy. The optical band gap, extinction coefficient, refractive index and optical conductivity were calculated using the transmittance spectra for all the samples. The thermal stability and the decomposition temperature were found to increase with the concentration of the dopant. This indicates the high quality of the crystal as well as its perfection. The SHG efficiency measurements were taken for the grown crystals and found that the SHG efficiency increases with doping concentration. The enhanced optical constants, thermal stability and second harmonic generation ability confirm the suitability of the grown crystals for solid-state laser materials.

Keywords

Nonlinear optical materials Dye-doped crystals Optical properties Dielectric analysis 

PACS Nos.

42.70.Mp 42.70.Nq 78.20.e 42.55.Mv 77.84.Lf 

Notes

Acknowledgements

The authors gratefully acknowledge the facilities offered by Presidency University, Bangalore, for doing this work and also place on record the support given by SAIF, Kochi, and IPC, IISc, where the analyses were done.

References

  1. [1]
    J Jeyaram, K Varadharajan, B Singaram, R Rajendhran J. Cryst. Growth. 486 96 (2018)ADSCrossRefGoogle Scholar
  2. [2]
    W Nie Adv. Mater. 5 520 (1993)CrossRefGoogle Scholar
  3. [3]
    M S Kajamuhideen, K Sethuraman, K Ramamurthi, P Ramasamy J. Cryst. Growth. 483 16 (2018)ADSCrossRefGoogle Scholar
  4. [4]
    S Nitti, H M Tan, G Banfi, V Degiorgio, R T Bailey, F Cruickshank, D Pugh, E A Shepherd, J N Sherwood, G S Simpson J. Phys. D. Appl. Phys. 26 B225 (1993)Google Scholar
  5. [5]
    E Garmire Opt. Express 21 30532 (2013)ADSCrossRefGoogle Scholar
  6. [6]
    X Ren, D Xu, D Xue J. Cryst. Growth. 310 2005 (2008)ADSCrossRefGoogle Scholar
  7. [7]
    D Xu, D Xue J. Cryst. Growth. 286 108 (2006)ADSCrossRefGoogle Scholar
  8. [8]
    V I Aleshin, I P Raevski J. Appl. Phys. 113 224105 (2013)ADSCrossRefGoogle Scholar
  9. [9]
    F. Pan, M. Shing Wong, C. Bosshard, P Günter, V Gramlich Adv. Mater. Opt. Electron. 6 261 (1996)Google Scholar
  10. [10]
    M Rifani, Y Yin, D S Elliott, M J Jay, S Jang, M P Kelley, L Bastin, B Kahr J. Am. Chem. Soc. 117 7572 (1995)CrossRefGoogle Scholar
  11. [11]
    A Costela, L Cerdan, I Garcia-Moreno Prog. Quantum Electron. 37 348 (2013)Google Scholar
  12. [12]
    A Mauri, M Moret J. Cryst. Growth 208 599 (2000)ADSCrossRefGoogle Scholar
  13. [13]
    E Yariv, S Schultheiss, T Saraidarov, R Reisfeld Opt. Mater. (Amst) 16 29 (2001)ADSCrossRefGoogle Scholar
  14. [14]
    G J Ashwell, G Jefferies, D G Hamilton, D E Lynch, M S P Roberts, G S Bahra, C R Brown Nature 375 385 (1995)ADSCrossRefGoogle Scholar
  15. [15]
    R E Hermes, T H Allik, S Chandra, J A Hutchinson Appl. Phys. Lett. 63 877 (1993)ADSCrossRefGoogle Scholar
  16. [16]
    F Amat-Guerri, A Costela, J M Figuera, F Florido, R Sastre, Chem. Phys. Lett. 209 352 (1993)ADSCrossRefGoogle Scholar
  17. [17]
    R Reisfeld, E Yariv, H Minti Opt. Mater. (Amst) 8 31 (1997)ADSCrossRefGoogle Scholar
  18. [18]
    E Yariv, R Reisfeld Opt. Mater. (Amst) 13 49 (1999)ADSCrossRefGoogle Scholar
  19. [19]
    J B Benedict, P M Wallace, P J Reid, S-H Jang, B Kahr Adv. Mater. 15 1068 (2003)CrossRefGoogle Scholar
  20. [20]
    B Kahr, A G Shtukenberg Cryst. Eng. Comm 18 8988 (2016)CrossRefGoogle Scholar
  21. [21]
    S Lovell, P Subramony, B Kahr J. Am. Chem. Soc. 121 7020 (1999)CrossRefGoogle Scholar
  22. [22]
    I Pritula, V Gayvoronsky, Yu Gromov, M Kopylovsky, M Kolybaeva, V Puzikov, A Kosinova, Yu Savvin, Yu Velikhov, A Levchenko Opt. Commun. 282 1141 (2009)ADSCrossRefGoogle Scholar
  23. [23]
    P Rajesh, A Silambarasan, P Ramasamy Crystal. Mater. Res. Bull. 49 640 (2014)CrossRefGoogle Scholar
  24. [24]
    G B Rao, P Rajesh, P Ramasamy Appl. Phys. A. 122 175 (2016)ADSCrossRefGoogle Scholar
  25. [25]
    P Kumaresan, S Moorthy Babu, P M Anbarasan J. Cryst. Growth 310 1999 (2008)ADSCrossRefGoogle Scholar
  26. [26]
    S Goel, N Sinha, H Yadav, A Hussain, B Kumar Mater. Res. Bull. 83 77 (2016)CrossRefGoogle Scholar
  27. [27]
    S Goel, N Sinha, H Yadav, A Hussain, A Joseph, B Kumar Arab. J. Chem. (2017) http://dx.doi.org/10.1016/j.arabjc.2017.03.003
  28. [28]
    Tizaoui C, Grima N Chem. Eng. Journal 173 463 (2011)Google Scholar
  29. [29]
    P Rajesh, A Silambarasan, P Ramasamy Mater. Res. Bull. 49 640 (2014)CrossRefGoogle Scholar
  30. [30]
    Yu Velikhov, I Pritula, I Ganina, M Kolybayeva, V Puzikov, A N Levchenko Cryst. Res. Technol. 42 27 (2007)CrossRefGoogle Scholar
  31. [31]
    S Chandran, R Paulraj, P Ramasamy Mat. Res. Bull. 68 210 (2015)Google Scholar
  32. [32]
    L Gomes, D Miwa, W Geoffroy Malpass, R P Artur Motheo J. Braz. Chem. Soc. 22 1299 (2011)Google Scholar
  33. [33]
    A H Abdullah, W-Y Wong, M I Yaziz Sains. Malays. 39 587 (2010)Google Scholar
  34. [34]
    J Tauc, R Grigorovici, A Vancu Status. Solid. 15 627 (1966)ADSCrossRefGoogle Scholar
  35. [35]
    R N Shaikh, M Anis, G Rabbani, M D Shirsat, S S Hussaini Opto Electron. Adv. Mat. 10 526 (2016)Google Scholar
  36. [36]
    J Dalal, N Sinha, B Kumar Opt. Mater 37 457 (2014)ADSCrossRefGoogle Scholar
  37. [37]
    M A Gaffar, A Abu El-Fadl, B in S Anooz Physica. B. 327 43 (2003)Google Scholar
  38. [38]
    S Kasap, P Capper Handbook of Electronic and Photonic Materials (Berlin: Springer) (2006)Google Scholar
  39. [39]
    S K Kurtz, T T Perry J. Appl. Phys. 39 3798 (1968)Google Scholar
  40. [40]
    P Kumaresan Opto Electron. Adv. Mat. Rapid. 4 (2010) 1981Google Scholar
  41. [41]
    P R Deepthi, J Shanthi, Rsc Adv. 6 33686 (2016)CrossRefGoogle Scholar
  42. [42]
    N Kanagathara, G Anbalagan Int. J. Optics. 1 (2012)Google Scholar
  43. [43]
    P Kumaresan, S Moorthy Babu, P M Anbarasan J. Nonlinear Opt. Phys. Mat. 16 255 (2007)Google Scholar
  44. [44]
    Z Sun, T Chen, N N Cai, J W Chen, L Li, Y Wang, J Luo, M Hong New J. Chem. 35 2804 (2011)CrossRefGoogle Scholar
  45. [45]
    B D Hatton, K Landskron, W J Hunks, M R Bennett, D Shukaris, D D Pervoic, G Ozin Mater. Today 9 22 (2006)CrossRefGoogle Scholar
  46. [46]
    Park J-H Solid-State Comm. 123 291 (2002)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • P. R. Deepthi
    • 1
    Email author
  • Anu Sukhdev
    • 1
  • P. Mohan Kumar
    • 1
  • J. Shanthi
    • 2
  • B. N. Pavithra
    • 1
  • B. C. Hemaraju
    • 3
  1. 1.Material Research CentrePresidency UniversityBengaluruIndia
  2. 2.Department of PhysicsAvinashilingam University for WomenCoimbatoreIndia
  3. 3.Department of Studies in PhysicsMysore UniversityMysoreIndia

Personalised recommendations