Advertisement

Numerical analysis of interface properties effects in CdTe/CdS:O thin film solar cell by SCAPS-1D

  • A. Teyou NgoupoEmail author
  • S. Ouédraogo
  • J. M. Ndjaka
Original Paper
  • 18 Downloads

Abstract

This paper investigates the influence of the absorber/window junction properties, on performances of CdTe/CdS:O solar cell, using SCAPS-1D package. Considering the case of ideal interfaces, charges transport mechanisms across the solar cell configuration are dominated by the diffusion and thermionic emission theories. We have shown that, with about 50 nm thickness of the absorber surface layer (CdTe1−xSx) and ΔEc at the CdTe/CdS:O interface comprises in the range [− 0.17 eV; 0 eV], an efficiency of about 21.85% can be reached. On the other hand, we obtained 21.77% with interface states density (Nt) in the range of 106–1011 cm−2 and a flat conduction band at absorber/window interface. Further simulations predict that reducing interface states and ΔEc at the absorber/window interface leads to the improvement of the cell efficiency. This improvement is also observed with the increase in the thickness of CdTe1−xSx and CdTe layers up to some values. Efficiency as high as 21.75% was obtained with ΔEc of − 0.1 eV, Nt less than 1010 cm−2 and CdTe bulk absorber thickness of 1.3 µm.

Keywords

Band offset Interface states Transportation mechanism Absorber surface layer Bulk absorber 

PACS No.

88.40.jm 

Notes

Acknowledgements

The authors acknowledge the use of SCAPS-1D program developed by Marc Burgelman and colleagues at the University of Gent in all the simulations reported in this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. [1]
    A Teyou Ngoupo, S Ouédraogo, F Zougmoré and J M Ndjaka Int. J. Photoenergy 2015 1 (2015)CrossRefGoogle Scholar
  2. [2]
    X Wu Sol. energy 77 803 (2004)ADSCrossRefGoogle Scholar
  3. [3]
    S M Felicia, G S Jessica, D Aryzbe and A Q Stella Thin Solid Films 589 298 (2015)CrossRefGoogle Scholar
  4. [4]
    G Kartopu, L J Phillips, V Barrioz, S J Irvine, S D Hodgson, E Tejedor, D Dupin, A J Clayton, S L Rugen-Hankey and K Durose Progress Photovolt. Res. Appl. 24 283 (2016)CrossRefGoogle Scholar
  5. [5]
    S Misra, M C Hymas, E A Lund, D Pruzan and M A Scarpulla IEEE 43rd in Photovoltaic Specialists Conference (PVSC) (2016)Google Scholar
  6. [6]
    M A Islam, K S Rahman, K Sobayel, T Enam, A M Ali, M Zaman, M Akhtaruzzaman and N Amin Sol. Energy Mater. Sol. Cells 172 384 (2017)CrossRefGoogle Scholar
  7. [7]
    G D Luis, C-R Román, C-C Marco, A M-T Enrique, M-G José, M-E Rubén, P-Q Ignacio and I Augusto J. Appl. Res. Technol. 15 271 (2017)CrossRefGoogle Scholar
  8. [8]
    H Moualkia, S Hariech, M S Aida, N Attaf and E L Laifa J. Phys. D Appl. Phys. 42 1 (2009)CrossRefGoogle Scholar
  9. [9]
    L Bin, Y Bo, L Yun and Chenghua Sol. Energy 118 350 (2015)CrossRefGoogle Scholar
  10. [10]
    T Carlsson and A Brinkman Progress Photovolt. Res. Appl. 14 213 (2006)CrossRefGoogle Scholar
  11. [11]
    M A Islam, Y Sulaiman and N Amin Chalcogenide Lett. 8 65 (2011)Google Scholar
  12. [12]
    M A Green, K Emery, Y Hishikawa, W Warta and E D Dunlop Progress Photovolt. Res. Appl. 23 805 (2015)CrossRefGoogle Scholar
  13. [13]
    M Gloeckler, A L Fahrenbruch and J R Sites Proceedings of 3rd World Conference in Photovoltaic Energy Conversion, Osaka, Japan (2003)Google Scholar
  14. [14]
    S Hossain, N Amin, M A Martin, M M Aliyu, T Razykov and K Sopian Chalcogenide Lett. 8 263 (2011)Google Scholar
  15. [15]
    M Burgelman, P Nollet and S Degrave Thin Solid Films 361 527 (2000)ADSCrossRefGoogle Scholar
  16. [16]
    A Morales-Acevedo Energy Proc. 57 3051 (2014)CrossRefGoogle Scholar
  17. [17]
    M Gloeckler and J R Sites Thin Solid Films 480 241 (2005)ADSCrossRefGoogle Scholar
  18. [18]
    I Clemminck, M Burgelman, M Casteleyn, J De Poorter and A Vervaet Conference Record of the Twenty Second IEEE in Photovoltaic Specialists Conference (1991)Google Scholar
  19. [19]
    A G Milnes and D L Feucht Heterojunctions and Metal-Semiconductor Junctions (New York: Academic Press) 227 (1972)Google Scholar
  20. [20]
    Y L Soo, S Huang, Y H Kao and A D Compaan J. Appl. Phys. 83 4173 (1998)ADSCrossRefGoogle Scholar
  21. [21]
    K D Dobson, I Visoly-Fisher, G Hodes and D Cahen Solar Energy Mater. Sol. Cells 62 295 (2000)CrossRefGoogle Scholar
  22. [22]
    A Islam, M A Matin, M M Aliyu, Y Sulaiman and N Amin 1st International Conference in DevelopmentIn Renewable Energy Technology (ICDRET) (2009)Google Scholar
  23. [23]
    M Burgelman, J Verschraegen, S Degrave and P Nollet Progress Photovolt. Res. Appl. 12 143 (2004)CrossRefGoogle Scholar
  24. [24]
    H Fardi and F Buny Int. J. Photoenergy 2013 1 (2013)CrossRefGoogle Scholar
  25. [25]
    S G Kumar and K K Rao Energy Environ. Sci. 7 45 (2014)CrossRefGoogle Scholar
  26. [26]
    Z Rumin, R Yu, L S Zhengyi and L Dijun J. Semicond. 36 012002 (2015)ADSCrossRefGoogle Scholar
  27. [27]
    H Mathieu and H Fanet Physique des semiconducteurs et des composants électriques: cours et exercices corrigés (éd. 6e édition) (Paris, France: Dunod) 122 (2009)Google Scholar
  28. [28]
    Y J Lee and J L Gray Conference Record of the Twenty Fourth in Photovoltaic Energy Conversion (1994)Google Scholar
  29. [29]
    S H Demtsu and J R Sites Conference Record of the Thirty-first IEEE in Photovoltaic Specialists Conference (2005)Google Scholar
  30. [30]
    R W Miles, K M Hynes and I Forbes Progress Cryst. Growth Charact. Mater. 51 1 (2005).CrossRefGoogle Scholar
  31. [31]
    S Ouédraogo, F Zougmoré and J M Ndjaka Int. J. Photoenergy 2013 1 (2013)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Département de Physique, Faculté des SciencesUniversité de Yaoundé 1YaoundéCameroun
  2. 2.Laboratoire des Matériaux et Environnement (LA.M.E), UFR-SEAUniversité de OuagadougouOuaga 03Burkina Faso

Personalised recommendations