Linear and nonlinear optical properties of alizarin red S thin films

  • A. S. AwedEmail author
  • N. A. El-Ghamaz
  • M. M. El-Nahass
  • H. M. Zeyada
Original Paper


In this work, alizarin red S (ARS) powder is deposited into thin films using thermal evaporation technique. Subsequently, the as-deposited films are annealed. The structural properties of ARS powder and films in the as-deposited as well as annealed conditions are investigated by the Fourier transform infrared spectroscopy and X-ray diffraction. The ARS powder shows a polycrystalline nature with monoclinic structure, while the films have revealed nanocrystallites distributed in an amorphous matrix. The thermal stability of ARS films up to 398 K is confirmed via employing differential scanning calorimeter. Further, the annealing process results in an increment of both the average crystallite size and the dislocation density and reduced the microstrain. Regarding optical studies, the direct transitions in ARS films are existed with an onset and optical energy band gaps equal to 1.84 and 2.93 eV, respectively, and upon annealing, these values have increased to 1.79 and 2.98 eV, respectively. Finally, the nonlinear refractive index and the third-order nonlinear optical susceptibility are decreased upon annealing process.


Alizarin red S Optical properties Dispersion parameters Nonlinear parameters Energy gap 


0.7.57.−c 0.760.Dq 0.7.60Rd 0.7.85.Tt 42.50Wk 42.65.−k 42.68.Ay 


  1. [1]
    M M El-Nahass, H M Zeyada, N A El-Ghamaz and A S Awed Optik (Stuttg) 170 304 (2018)ADSCrossRefGoogle Scholar
  2. [2]
    A El-ghandour, A S Awed, M I A Abdel Maksoud and M A Nasher Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 206 466 (2019)ADSCrossRefGoogle Scholar
  3. [3]
    S Ranjitha, V Aroulmoji, T Mohr, P M Anbarasan and G Rajarajan Acta Phys. Pol. A 126 833 (2014)CrossRefGoogle Scholar
  4. [4]
    N Liu and G Sun Ind. Eng. Chem. Res. 50 5326 (2011)CrossRefGoogle Scholar
  5. [5]
    F Fournou Synthetic Fibers (Hanser/Gardner Publications, Inc.) 6 151 (1999)Google Scholar
  6. [6]
    C Sun, Y Li, D Qi, H Li and P Song J. Mater. Sci. Electron. 27 8027 (2016)CrossRefGoogle Scholar
  7. [7]
    H Yadav, P Raghavan and T Varadarajan Synth. Met. 57 5094 (1993)CrossRefGoogle Scholar
  8. [8]
    D Nicholls 174 (1974)Google Scholar
  9. [9]
    A M Faouzi, B Nasr and G Abdellatif Dye Pigments 73 86 (2007)CrossRefGoogle Scholar
  10. [10]
    K P Chandra, R N Gupta and K Prasad Int. J. Mod. Phys. B 22 2321 (2008)ADSCrossRefGoogle Scholar
  11. [11]
    M G A El Wahed, S A Aly, H A Hammad, and S M Metwally J. Phys. Chem. Solids 55 31 (1994)CrossRefGoogle Scholar
  12. [12]
    J Singh Optical Properties of Condensed Matter and Applications John Wiley & Sons (2006)Google Scholar
  13. [13]
    R W Sabnis Handb. Biol. Dye Stain. Synth. Ind. Appl. 444 (2010)Google Scholar
  14. [14]
    L Legan, K Retko and P Ropret Microchem. J. 127 36 (2016).CrossRefGoogle Scholar
  15. [15]
    R Shirley Lattice Press 41 931 (2000)Google Scholar
  16. [16]
    L Davidoff, S Blundell, L A Jackson, A Shepard, A L Erickson, M B Peruga, P Starkey, K G Doern, J McDermid, I Elgqvist-Saltzman, E Riedi, L Attwood, J Fink, D Stone, A Bhalia and D Thom Gend. Hist. 12 487 (2000)Google Scholar
  17. [17]
    R Sivakami, S Dhanuskodi and R Karvembu Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152 43 (2016).ADSCrossRefGoogle Scholar
  18. [18]
    S Velumani, X Mathew and P J Sebastian 76 359 (2003)Google Scholar
  19. [19]
    H M Zeyada, M M El-Nahass, I S Elashmawi and A A Habashi J. Non Cryst. Solids 358 625 (2012)ADSCrossRefGoogle Scholar
  20. [20]
    D D Sell, H C Casey and K W Wecht J. Appl. Phys. 45 2650 (1974)ADSCrossRefGoogle Scholar
  21. [21]
    N A El-Ghamaz, A Z El-Sonbati and M A El-Mogazy J. Mol. Liq. 248 556 (2017)CrossRefGoogle Scholar
  22. [22]
    H M Zeyada, M M El-Nahass, I K El-Zawawi and E M El-Menyawy J. Phys. Chem. Solids 71 867 (2010).ADSCrossRefGoogle Scholar
  23. [23]
    G Kumar, J Thomas, N George, B Kumar, P Radhakrishnan, V Nampoori, C Vallabhan and N Unnikrishnan Phys. Chem. Glasses 41 89 (2000)Google Scholar
  24. [24]
    B H Schechtman and W E Spicer J. Mol. Spectrosc. 33 28 (1970)ADSCrossRefGoogle Scholar
  25. [25]
    O S Heavens J. Mod. Opt. 39 189 (1992)ADSCrossRefGoogle Scholar
  26. [26]
    N Aghamalyan, E K Goulanian, R Hovsepyan, E Vardanyan and A Zerrouk Phys. Status Solidi 199 425 (2003)ADSCrossRefGoogle Scholar
  27. [27]
    H M Zeyada, M M El-Nahass and M M El-Shabaan J. Mater. Sci. 47 493 (2012)ADSCrossRefGoogle Scholar
  28. [28]
    A S Hassanien J. Alloys Compd. 671 566 (2016)CrossRefGoogle Scholar
  29. [29]
    S H Wemple and M DiDomenico Phys. Rev. B 3 1338 (1971)ADSCrossRefGoogle Scholar
  30. [30]
    D. Smith, E. Shiles, M. Inokuti and E. Palik Handb. Opt. Constants Solids 1 369 (1985)Google Scholar
  31. [31]
    R Boyd and G Fischer (2001)Google Scholar
  32. [32]
    C C Wang Phys. Rev. B 2 2045 (1970)ADSCrossRefGoogle Scholar
  33. [33]
    C Republic and C Republic 4 381 (2002).Google Scholar
  34. [34]
    H-L Fan Nat. Sci. 01 136 (2009)Google Scholar
  35. [35]
    C Shu and Y Wang 8 833 (1998)Google Scholar
  36. [36]
    M M El-Nahass, H M Zeyada, N A El-Ghamaz and A El-Ghandour Shetiwy Optik (Stuttg) 171 580 (2018)ADSCrossRefGoogle Scholar
  37. [37]
    P Zhou, G You, J Li, S Wang, S Qian and L Chen 13 1508 (2005)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • A. S. Awed
    • 1
    Email author
  • N. A. El-Ghamaz
    • 1
  • M. M. El-Nahass
    • 2
  • H. M. Zeyada
    • 1
  1. 1.Physics Department, Faculty of ScienceDamietta UniversityNew DamiettaEgypt
  2. 2.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations