Advertisement

Indian Journal of Physics

, Volume 92, Issue 6, pp 799–811 | Cite as

Influence of particle velocity on the conductivity of dusty plasma

  • C. M. Xu
  • Y. Y. ChenEmail author
  • R. J. Yu
  • Y. Y. Zhang
Original Paper

Abstract

Conductivity is a popular branch of dusty plasma research. In this paper, on the basis of considering the influence of charged particles’ (electrons and ions) flow velocity, the conductivity of dusty plasma is derived and studied. Firstly, the charging currents are deduced on considering the influence of flow velocity, and the theoretical results manifest that it increases with the increase of flow velocity. Secondly, both the real and imaginary parts of the conductivity are derived, based on which, the dependence of conductivity on the flow velocity is discussed. In further, it is found that both the real and imaginary parts have a turning point. Finally, a ratio defined as charged particles’ flow velocity to thermal velocity is proposed to analyze the dependence of the conductivity on the velocities. The involved results reveal that both the real and imaginary parts of the conductivity have a turning point in their dependence on the ratio, but the specific ratio value is different.

Keywords

Dusty plasma Conductivity Flow velocity 

PACS Nos.

52.27.Lw 52.25.-b 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 11204140), and was sponsored by the Natural Science Foundation (Grant No. BK20151522), as well as the Six Major Talent Peak Expert (Grant No. R2016L14) and the Qing Lan Project of Jiangsu province.

References

  1. [1]
    Y Y Chen, G G Zheng, F Gu and Z H Li Acta Phys. Sin. 61 154202 (2012) (in Chinese) Google Scholar
  2. [2]
    E C Whipple Rep. Prog. Phys. 44 1197 (1981)ADSCrossRefGoogle Scholar
  3. [3]
    C K Goertz Rev. Geophys. Space Phys. 27 271 (1989)CrossRefGoogle Scholar
  4. [4]
    J Winter Plasma Phys. Control. Fusion 40 1201 (1998)ADSCrossRefGoogle Scholar
  5. [5]
    J Winter Plasma Phys. Control. Fusion 46 583 (2004)CrossRefGoogle Scholar
  6. [6]
    R M Roth, K G Spears, G D Stein and G Wong Appl. Phys. Lett. 46 253 (1985)ADSCrossRefGoogle Scholar
  7. [7]
    J X Ma Physics 35 244 (2006) (in Chinese) Google Scholar
  8. [8]
    P K Shukla, A A Mamun Florida: CRC Press 44 395 (2001)Google Scholar
  9. [9]
    H Y Li, P F Kong, J Zhan, Z S Wu and B Lu Chin. J. Radio Sci. 31 654 (2016) (in Chinese) Google Scholar
  10. [10]
    B S Xie Plasma Sci. Technol. 2 171 (2000)ADSCrossRefGoogle Scholar
  11. [11]
    X R Hong, W S Duan, J A Sun, Y R Shi and K P Lv Acta Phys. Sin. 52 2671 (2003) (in Chinese) Google Scholar
  12. [12]
    Z X Wang, J Y Liu and X Zou Acta Phys. Sin. 53 793 (2004)Google Scholar
  13. [13]
    J W Li, Z Y Li Chin. Space Sci. 24 321 (2004) (in Chinese)Google Scholar
  14. [14]
    Y X Shi, D B Ge and J Wu Acta Phys. Sin. 55 5318 (2006) (in Chinese) Google Scholar
  15. [15]
    A B Petrin IEEE Trans. Plasma Sci. 29 471 (2001)ADSCrossRefGoogle Scholar
  16. [16]
    O P Ely J. Spacecr. Rockets 3 310 (1966)ADSCrossRefGoogle Scholar
  17. [17]
    H C Kim, J P Verboncoeur Comput. Phys. Commun. 177 118 (2007)ADSCrossRefGoogle Scholar
  18. [18]
    T J Seliga J. Spacecr. Rockets 4 774 (1967)ADSCrossRefGoogle Scholar
  19. [19]
    E J Baghdady, O P Ely Proc. IEEE 54 1134 (1966)CrossRefGoogle Scholar
  20. [20]
    M R Jana, A Sen and P K Kaw Phys. Rev. E 48 3930 (1993)ADSCrossRefGoogle Scholar
  21. [21]
    V N Tsytovich, O Havnes Comments Plasma Phys. Control. Fusion 15 267 (1993)Google Scholar
  22. [22]
    R K Shukla Plasma Phys. 7 1044 (2000)CrossRefGoogle Scholar
  23. [23]
    J Goree Phys. Rev. Lett. 69 277 (1992)ADSCrossRefGoogle Scholar
  24. [24]
    F Li, B W Lv and O Havnes Sci. China (Ser. A) 26 954 (1996) (in Chinese) Google Scholar
  25. [25]
    O Havnes, F Melandsø, C la Hoz, T K Aslaksen and T Hartquist Phys. Scr. 45 535 (1992)ADSCrossRefGoogle Scholar
  26. [26]
    O Havnes, T Aalaksen and A Brattli Phys. Scr. T89 133 (2001)ADSCrossRefGoogle Scholar
  27. [27]
    J H Chen Chin. Phys. B 18 2121 (2009)ADSCrossRefGoogle Scholar
  28. [28]
    J N Wei, Y R Shi, G J He, X Jiang, W S Duan and J M Chen Chin. Phys. B 52 517 (2009)Google Scholar
  29. [29]
    X H Qi, W S Duan, J M Chen and S J Wang Chin. Phys. B 20 347 (2011)Google Scholar
  30. [30]
    X L Li, Y X Shi Acta Phys. Sin. 63 271 (2014)Google Scholar
  31. [31]
    C J Yao, C H Yang and Y Y Chen Laser Optoelectron. Prog. 53 241 (2016) (in Chinese) Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2017

Authors and Affiliations

  • C. M. Xu
    • 1
    • 3
  • Y. Y. Chen
    • 1
    • 2
    • 3
    Email author
  • R. J. Yu
    • 1
    • 3
  • Y. Y. Zhang
    • 4
  1. 1.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and OceanNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET)Nanjing University of Information Science and TechnologyNanjingChina
  3. 3.School of Physics and Optoelectronic EngineeringNanjing University of Information Science and TechnologyNanjingChina
  4. 4.School of Physics and Electronic EngineeringNanjing Xiaozhuang UniversityNanjingChina

Personalised recommendations