Indian Journal of Physics

, Volume 91, Issue 2, pp 225–234 | Cite as

Surface properties of graphite and LaB6 materials used for laser heated emissive probe diagnostic

  • P. Mehta
  • A. Sarma
  • A. D. Sivagami
  • N. HariPrakash
  • S. Gopi
  • B. Sarma
  • J. Ghosh
Original Paper
  • 101 Downloads

Abstract

Laser heated emissive probe (LHEP) has been used as an alternative diagnostics to measure direct plasma potential. In this case, surface properties of LHEP materials have been studied before and after exposing it to high power laser. A high density small diameter (0.5 mm) laser light of variable power density is used to heat the probe tip. Two types of probe tip material are used in this experiment, viz, Graphite (Coarse grain and HOPG) and LaB6. Purity of material is dependent on the constituents of the same. Surface properties of these materials before and after laser exposure and plasma conditions have been characterized by scanning electron microscopy (SEM) and the energy dispersive X-ray spectroscopy. In order to achieve higher sensitivity on carbon surface and other layers the low-energy probing (~1.0 keV), the energy dispersive spectroscopy is used. Data of the energy dispersive X-ray spectroscopy allows us to obtain the structure of the materials as well as different elements present in these materials. To understand the surface morphology more critically, open source software named Gwyddion (version 2.35) has been used for processing of the SEM images. The 3-D visualization of the probe tip at different experimental conditions has been made using the Interactive 3-D surface plot plug-in of Gwyddion. Optical properties are also analyzed using diffusion reflectance spectroscopy and from which band gap energy of the same has been estimated.

Keywords

Laser heated Emissive Material Surface EDAX analysis Image 

PACS Nos.

52.20.Fs 52.25.Tx 52.38.Dx 52.70.–m 61.30.Hn 

References

  1. [1]
    J R Smith, N Hershkowitz, and P Coakley Rev. Sci. Instrum. 50(2) 210 (1979)ADSCrossRefGoogle Scholar
  2. [2]
    R Schrittwieser et al. Rev. Sci. Instrum. 79 083508 (2008)ADSCrossRefGoogle Scholar
  3. [3]
    Akie Yutani, Akihiko Kobayashi and Akira Kinbara Appl. Surf. Sci. 7071 737 (1993)CrossRefGoogle Scholar
  4. [4]
    P Mehta et al. Chin. Phys. Lett. 31 125201 (2014)ADSCrossRefGoogle Scholar
  5. [5]
    A Ilyin, N Guseinov, A Nikitinand and I Tsyganov Physia E 42 2078 (2010)Google Scholar
  6. [6]
    Y Ma, P O Lehtinen, A S Foster and R M Nieminen N. J. Phys. 6 68 (2004)Google Scholar
  7. [7]
    J Chen, W Cullen, C Jang, M S Fuhrer and E D Williams Phys. Rev. Lett. 102 236805 (2009)ADSCrossRefGoogle Scholar
  8. [8]
    S Srinivasan and R Saraswathi Curr. Sci. 97(3) 302 (2009)Google Scholar
  9. [9]
    A Hashimoto, K Suenaga, A Gloter, K Urita and S Iijima Nature 430 870 (2004)Google Scholar
  10. [10]
    P Mehta et al. Curr. Appl. Phys. 11 1215 (2011)ADSCrossRefGoogle Scholar
  11. [11]
    J E Castle Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (Chichester: Wiley) ed. D Briggs and M P Seah p 533 (1983)Google Scholar
  12. [12]
    J D Brooks and G H Taylor The formation of some graphitizing carbon, Chem. and Phys. of Carbon (New York: Dekker M) ed. Walker P L Jr. p 243 (1968)Google Scholar
  13. [13]
    C H Booth, J L Sarrao, M F Hundley, A L Cornelius, G H Kwei, A Bianchi, Z Fisk, J M Lawrence Phys. Rev. B 63 224302 (2001)ADSCrossRefGoogle Scholar
  14. [14]
    H Zhang, Q Zhang, I Tang, L C Qin J. Am. Chem. Soc. 127 2862 (2005)CrossRefGoogle Scholar
  15. [15]
    T Takigawa, I Sasaki and T Meguro J. Appl. Phys. 53 5891 (1982)ADSCrossRefGoogle Scholar
  16. [16]
    R Nishitani, M Aono, T Tanaka, C Oshima, S Kawai, H Iwasaki and S Nakamura Surf. Sci. 93 535 (1980)Google Scholar
  17. [17]
    C Oshima, E Bannai, T Tanaka and S. Kawai J. Appl. Phys. 48 3925 (1977)ADSCrossRefGoogle Scholar
  18. [18]
    R Monnier and B Delley Phys. Rev. B 70 193403 (2004)ADSCrossRefGoogle Scholar
  19. [19]
    S Chandrasekaran, J Check, S Sundararajan and P Shrotriya Sensors and Actuators A 121 121 (2005)Google Scholar
  20. [20]
    G Chinga, P Johnsen, R Dougherty, E Berli and J Walter J. Microsc. 227 254 (2007)CrossRefGoogle Scholar
  21. [21]
    Y Li, H Xie and J Tu Mater Lett. 63 1785 (2009)CrossRefGoogle Scholar
  22. [22]
    J D J Ingle and S R Crouch Spectrochemical analysis (Englewood Cliffs: PHI) p 372 (1988)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2016

Authors and Affiliations

  • P. Mehta
    • 1
  • A. Sarma
    • 2
  • A. D. Sivagami
    • 2
  • N. HariPrakash
    • 2
  • S. Gopi
    • 3
  • B. Sarma
    • 2
  • J. Ghosh
    • 4
  1. 1.Venus International College of TechnologyGandhinagarIndia
  2. 2.School of Advanced Science (SAS)VIT UniversityChennaiIndia
  3. 3.Electrical EngineeringIndian Institute of Technology GandhinagarAhmedabadIndia
  4. 4.Institute of Plasma ResearchBhat, GandhinagarIndia

Personalised recommendations