Indian Journal of Physics

, Volume 89, Issue 10, pp 1041–1050 | Cite as

Characterization of metal-free D-(π-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells

  • M. Singh
  • R. Kurchania
  • A. Pockett
  • R. J. Ball
  • E. N. Koukaras
  • P. J. Cameron
  • G. D. Sharma
Original paper

Abstract

The optical, electrochemical and density functional theory molecular simulation of a metal-free D-(π-A)2, i.e., 3,3′-(5,5′-(9-hexyl-9H-carbazole-3,6-diyl)bis(thiophene-5,2-diyl))bis(2-cyanoacrylic acid) denoted as D has been investigated. A stepwise cosensitization of D with N719 dye is adopted to enhance the power conversion efficiency of dye-sensitized solar cells. The metal-free dye possesses strong absorption in the 370–450 nm wavelength range and effectively overcomes the competitive light absorption by I3/I. The N719/D cosensitized dye-sensitized solar cell shows a power conversion efficiency of about 7.24 %, which is higher than the dye-sensitized solar cells based on either N719 (5.78 %) or D (3.95 %) sensitizers. The improved power conversion efficiency of the cosensitized dye-sensitized solar cell is attributed to the combined enhancement of both short-circuit photocurrent and open-circuit voltage. The short-circuit photocurrent improvement is attributed to the increase in the both light-harvesting efficiency of the cosensitized photoanode and charge collection efficiency of the dye-sensitized solar cell. However, the open-circuit voltage is improved due to better adsorption and surface coverage of TiO2 on cosensitization and an associated reduction in the back electron recombination with increased electron lifetime. These effects are analyzed using electrochemical impedance spectroscopy and dark current–voltage measurements of the dye-sensitized solar cells.

Keywords

Cosensitization Metal-free D-(π-A)2 dye Dye-sensitized solar cells Electrochemical impedance spectroscopy 

PACS No.

84.60.jt 

Notes

Acknowledgments

Manjeet Singh is grateful to Maulana Azad National Institute of Technology (MANIT), Bhopal, India, for Institute Fellowship for supporting his doctoral studies. Authors are thankful to UK India Education and Research Initiative (UKIERI-II) project coordinated by the British Council, New Delhi, India, for financial support through a Thematic Partnership. Authors are also thankful to M. Chandrasekharam, Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India, for providing the metal-free dye D.

References

  1. [1]
    M Gratzel Acc. Chem. Res. 42 1788 (2009)CrossRefGoogle Scholar
  2. [2]
    A Hagfeldt, G Boschloo, L Sun, L Kloo and H Pettersson Chem. Rev. 110 6595 (2010)CrossRefGoogle Scholar
  3. [3]
    M V Marınez-Dıaz, G de la Torre and T Torres Chem. Commun. 46 7090 (2010)CrossRefGoogle Scholar
  4. [4]
    B O’Regan and M. Gratzel Nature 353 737 (1991)CrossRefADSGoogle Scholar
  5. [5]
    A Yella et al. Science 334 629 (2011)CrossRefADSGoogle Scholar
  6. [6]
    W Zeng et al. Chem. Mater. 22 1915 (2010)CrossRefGoogle Scholar
  7. [7]
    A Mishra, M K R Fischer and P Bauerle Angew. Chem. Int. Ed. 48 2474 (2009)CrossRefGoogle Scholar
  8. [8]
    A Hagfeldt, G Boschloo, L Sun, L Kloo and H Pettersson Chem. Rev. 110 6595 (2010)CrossRefGoogle Scholar
  9. [9]
    Y S Yen, H H Chou, Y C Chen, C Y Hsu and J T Lin J. Mater. Chem. 22 8734 (2012)CrossRefGoogle Scholar
  10. [10]
    A Abbotto et al. Dalton Trans. 40 234 (2011)CrossRefGoogle Scholar
  11. [11]
    S Paek et al. Chem. Commun. 47 2874 (2011)CrossRefGoogle Scholar
  12. [12]
    Y Liu et al. Chem. Commun. 47 4010 (2011)CrossRefGoogle Scholar
  13. [13]
    T Maeda, Y Hamamura, K Miyanaga, N Shima, S Yagi and H Nakazumi Org. Lett. 13 5994 (2011)CrossRefGoogle Scholar
  14. [14]
    S Gomez Esteban, P de la Cruz, A Aljarilla, L M Arellano and F Langa Org. Lett. 13 5362 (2011)CrossRefGoogle Scholar
  15. [15]
    A Braga, S Gimenez, I Concina, A Vomiero and I N Mora-Sero J. Phys. Chem. Lett. 2 454 (2011)CrossRefGoogle Scholar
  16. [16]
    C Jiao, N Zu, K-W Huang, P Wang and J Wu Org. Lett. 13 3652 (2011)CrossRefGoogle Scholar
  17. [17]
    K M Lee et al. J. Power Sources 196 2416 (2011)CrossRefGoogle Scholar
  18. [18]
    J Waman, F Buschest, Y Pellegtin, E Blart and F Odobel Org. Lett. 13 3944 (2011)CrossRefGoogle Scholar
  19. [19]
    R Y Ogura, S Nakane, M Morooka, M Orihashi, Y Suzuki and K Noda Appl. Phys. Lett. 94 073308 (2009)Google Scholar
  20. [20]
    C M Lan et al. Energy Environ. Sci. 5 6460 (2012)CrossRefGoogle Scholar
  21. [21]
    L Han et al. Energy Environ. Sci. 5 6057 (2012)CrossRefGoogle Scholar
  22. [22]
    H Ozawa, R Shimizu and H Arakawa RSC Adv. 2 3198 (2012)CrossRefGoogle Scholar
  23. [23]
    J H Yum, E Baranoff, S Wenger, M K Nazeeruddin and M Gratzel Energy Environ. Sci. 4 842 (2011)CrossRefGoogle Scholar
  24. [24]
    S Mathew et al. Nature Chemistry 6 242 (2014)MathSciNetCrossRefGoogle Scholar
  25. [25]
    J J Cid et al. Angew. Chem. Int. Ed. 46 8358 (2007)CrossRefGoogle Scholar
  26. [26]
    B-W Park et al. Appl. Phys. Express 4 012301 (2011)CrossRefADSGoogle Scholar
  27. [27]
    T Ono, T Yamaguchi and H Arakawa Sol. Energy Mater. Sol. Cells 93 831 (2009)CrossRefGoogle Scholar
  28. [28]
    D Kuang et al. Langmuir 23 10906 (2007)CrossRefGoogle Scholar
  29. [29]
    S-Q Fan et al. J. Phys. Chem. C 115 7747 (2011)CrossRefADSGoogle Scholar
  30. [30]
    C-M Lan et al. Energy Environ. Sci. 5 6460 (2012)CrossRefGoogle Scholar
  31. [31]
    K-M Lee et al. J. Power Sources 196 2416 (2011)CrossRefGoogle Scholar
  32. [32]
    L H Nguyen et al. Phys. Chem. Chem. Phys. 14 16182 (2012)CrossRefGoogle Scholar
  33. [33]
    K S V Gupta et al. Organic Electronics 15 266 (2014)CrossRefGoogle Scholar
  34. [34]
    S Roquet et al. J. Am. Chem. Soc. 28 3459 (2006)CrossRefGoogle Scholar
  35. [35]
    Q Wang, J E Moser and M Gratzel J. Phys. Chem. B 109 14945 (2005)CrossRefGoogle Scholar
  36. [36]
    A Burke, S Ito, H Snaith, U Bach, K Kwiatkowski and M Gratzel Nano Lett. 8 977 (2008)CrossRefADSGoogle Scholar
  37. [37]
    Z J Ning et al. J. Phys. Chem. C 113 10307 (2009)CrossRefGoogle Scholar
  38. [38]
    C Klein, M K Nazeeruddin, D D Censo, P Liska and M Gratzel Inorg. Chem. 43 4216 (2004)Google Scholar
  39. [39]
    S Hwang et al. Chem. Commun. 2007 4887 (2007)Google Scholar
  40. [40]
    W Wu et al. J. Mater. Chem. 20 1772 (2010)CrossRefGoogle Scholar
  41. [41]
    S Ito et al. Adv. Mater. 18 1202 (2006)CrossRefGoogle Scholar
  42. [42]
    M J Frisch et al. Gaussian 03 version C01 (Wallingford CT: Gaussian, Inc) (2004)Google Scholar
  43. [43]
    TURBOMOLE (version 5.6) Universitat Karlsruhe (2000)Google Scholar
  44. [44]
    Z S Wang et al. J. Phys. Chem. B 109 3907 (2005)CrossRefGoogle Scholar
  45. [45]
    M Wang et al. Nano Today 5 169 (2010)CrossRefGoogle Scholar
  46. [46]
    Y Cao et al. J. Phys. Chem. C 113 6290 (2009)CrossRefGoogle Scholar
  47. [47]
    J Y Kim, Y H Kim and Y S Kim Curr. Appl. Phys. 11 S117 (2011)CrossRefADSGoogle Scholar
  48. [48]
    B J Song et al. Chem AEur. J. 17 11115 (2011)CrossRefGoogle Scholar
  49. [49]
    S H Kang et al. J. Mater. Chem. A 1 3977 (2013)CrossRefGoogle Scholar
  50. [50]
    H M Song et al. J. Mater. Chem. 22 3786 (2012)CrossRefGoogle Scholar
  51. [51]
    R Kern, R Sastrawan, J Ferber, R Stangl and J Luther Electrochim. Acta 47 4213 (2002)CrossRefGoogle Scholar
  52. [52]
    J Bisquert J. Phys. Chem. B 106 325 (2002)CrossRefGoogle Scholar
  53. [53]
    J Bisquert Phys. Chem. Chem. Phys. 5 5360 (2003)CrossRefGoogle Scholar
  54. [54]
    F Fabregat-Santiago, J Bisquert, G Garcia-Belmonte, G Boschloo and A Hagfeldt Sol. Energy Mater. Sol. Cells 87 117 (2005)CrossRefGoogle Scholar
  55. [55]
    Q Wang et al. J. Phys. Chem. B 110 25210 (2006)CrossRefGoogle Scholar
  56. [56]
    F Fabregat-Santiago et al. J. Am. Chem. Soc. 131 558 (2009)CrossRefGoogle Scholar
  57. [57]
    J Bisquert, F Fabregat-Santiago, I Mora-Sero, G Garcia-Belmonte and S J Gimenez J. Phys. Chem. C 113 17278 (2009)CrossRefGoogle Scholar
  58. [58]
    J Nissfolk, K Fredin, A Hagfeldt and G Boschloo J. Phys. Chem. B 110 17715 (2006)CrossRefGoogle Scholar
  59. [59]
    Z Zhang, S M Zakeeruddin, B O’Regan, R Humphry-Baker and M Gratzel J. Phys. Chem. B 109 21818 (2005)CrossRefGoogle Scholar
  60. [60]
    N Kopidakis, N R Neale and A J Frank J. Phys. Chem. B 110 12485 (2006)CrossRefGoogle Scholar
  61. [61]
    M A Green Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs, NJ: Prentice-Hall) (1982)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2015

Authors and Affiliations

  • M. Singh
    • 1
  • R. Kurchania
    • 1
  • A. Pockett
    • 2
  • R. J. Ball
    • 3
  • E. N. Koukaras
    • 4
  • P. J. Cameron
    • 2
  • G. D. Sharma
    • 5
  1. 1.Department of PhysicsMaulana Azad National Institute of Technology (MANIT)BhopalIndia
  2. 2.Department of ChemistryUniversity of BathBathUK
  3. 3.Department of Architecture and Civil EngineeringUniversity of BathBathUK
  4. 4.Institute of Chemical Engineering ScienceFoundation for Research and Technology HellasPatrasGreece
  5. 5.R&D Center for Engineering and ScienceJEC Group of CollegesJaipurIndia

Personalised recommendations