Indian Journal of Physics

, Volume 89, Issue 10, pp 1085–1091 | Cite as

The rotational–vibrational properties of 178−188Os isotopes

  • I. Mamdouh
  • M. Al-JubboriEmail author
Original paper


The properties of the ground and excited-state bands of 178−188Os nuclei have been studied. The ratio E γ /I has been calculated as a function of the spin (I) to determine the ground-state evolution. The ratio between the energies of the (I + 2) and (I) states as a function of the spin (I) has been drawn to determine the property of the ground-state band. The energy levels for the ground-state band of 178−188Os have been calculated using Bohr–Mottelson model, Interacting Boson Model, interacting vector boson model and Doma–El-Gendy relation. The negative parity band of 178−188Os has been also calculated using above models. The γ-band of 178−188Os isotopes and β-band states of 178,182,184Os isotopes have been calculated using Interacting Boson Model. The parameters of the best fit to the measured data are determined.


Ground-state band E-GOS The ratio between the energies of I and I + 2 IBM-1 IVBM D–G formula 


21.60.Fw 21.10.Re 23.20.Lv 



The authors would like to thank Dr. K. I. Saeed and Dr. A. K. Mheemeed of the Mosul University for useful discussions.


  1. [1]
    F Iachello and I Talmi Rev. Mod. Phys. 59 339 (1987)MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    W Greiner and J A Maruhn Nuclear Models (Heidelberg: Springer-Verlag) p 375 (1996)zbMATHCrossRefGoogle Scholar
  3. [3]
    A Bohr and B R Mottelson Nuclear Structure (Singapore: Word Scientific) Vol. II p 748 (1998)CrossRefGoogle Scholar
  4. [4]
    K S Raymond and P C Sood Phys. Rev. C 34 2362 (1986)CrossRefADSGoogle Scholar
  5. [5]
    W R Phillips et al. Phys. Rev. Lett. 57 3257 (1986)CrossRefADSGoogle Scholar
  6. [6]
    D Bonatsos et al. Phys. Rev. C 62 024301 (2000)CrossRefADSGoogle Scholar
  7. [7]
    D Bonatsos, P E Georgoudis, N Minkov, D Petrellis and C Quesne Phys. Rev. C 88 034316 (2013)CrossRefADSGoogle Scholar
  8. [8]
    K S Krane: Introductory Nuclear Physics (New York: John Willey and Sons) (1987)Google Scholar
  9. [9]
    P H Regan et al. Phys. Rev. Lett. 90 152502 (2003)CrossRefADSGoogle Scholar
  10. [10]
    D Bonatsos and L D Skouras Phys. Rev. C 43 952R (1991)CrossRefADSGoogle Scholar
  11. [11]
    A M Khalaf and A M Ismail Prog. Phys. 2 98 (2013)Google Scholar
  12. [12]
    F Iachello and A Arima The Interacting Boson Model (England: Cambridge University Press) (1987)CrossRefGoogle Scholar
  13. [13]
    F Iachello Phys. Rev. Lett. 85 3580 (2000)CrossRefADSGoogle Scholar
  14. [14]
    H Ganev, V P Garistov and A I Georgieva Phys. Rev. C 69 014305 (2004)CrossRefADSGoogle Scholar
  15. [15]
    S B Doma and HS EL-Gendy Inter. Jour. Mode. Phys. E 21 1250077 (2012)CrossRefADSGoogle Scholar
  16. [16]
    G Scharff-Goldhaber and J Weneser Phys. Rev. 98 212 (1955)CrossRefADSGoogle Scholar
  17. [17]
    A Bohr and B R Mottelson Mat. Fys. Medd 27 16 (1953)Google Scholar
  18. [18]
    O Scholten et al. Ann. Phys. 115 325 (1978)CrossRefADSGoogle Scholar
  19. [19]
    F Iachello, K Abrahams, K Allaart and A E Dieperink Nuclear Structure (New York: Plenum Press) (1981)Google Scholar
  20. [20]
    R F Casten and D D Warner Rev. Mod. Phys. 60 389 (1988)MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    ENSDF (Nuclear data sheet) (2009)

Copyright information

© Indian Association for the Cultivation of Science 2015

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure ScienceUniversity of MosulMosulIraq

Personalised recommendations