Advertisement

Indian Journal of Physics

, Volume 89, Issue 10, pp 1085–1091 | Cite as

The rotational–vibrational properties of 178−188Os isotopes

  • I. Mamdouh
  • M. Al-JubboriEmail author
Original paper

Abstract

The properties of the ground and excited-state bands of 178−188Os nuclei have been studied. The ratio E γ /I has been calculated as a function of the spin (I) to determine the ground-state evolution. The ratio between the energies of the (I + 2) and (I) states as a function of the spin (I) has been drawn to determine the property of the ground-state band. The energy levels for the ground-state band of 178−188Os have been calculated using Bohr–Mottelson model, Interacting Boson Model, interacting vector boson model and Doma–El-Gendy relation. The negative parity band of 178−188Os has been also calculated using above models. The γ-band of 178−188Os isotopes and β-band states of 178,182,184Os isotopes have been calculated using Interacting Boson Model. The parameters of the best fit to the measured data are determined.

Keywords

Ground-state band E-GOS The ratio between the energies of I and I + 2 IBM-1 IVBM D–G formula 

PACS Nos.

21.60.Fw 21.10.Re 23.20.Lv 

Notes

Acknowledgments

The authors would like to thank Dr. K. I. Saeed and Dr. A. K. Mheemeed of the Mosul University for useful discussions.

References

  1. [1]
    F Iachello and I Talmi Rev. Mod. Phys. 59 339 (1987)MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    W Greiner and J A Maruhn Nuclear Models (Heidelberg: Springer-Verlag) p 375 (1996)zbMATHCrossRefGoogle Scholar
  3. [3]
    A Bohr and B R Mottelson Nuclear Structure (Singapore: Word Scientific) Vol. II p 748 (1998)CrossRefGoogle Scholar
  4. [4]
    K S Raymond and P C Sood Phys. Rev. C 34 2362 (1986)CrossRefADSGoogle Scholar
  5. [5]
    W R Phillips et al. Phys. Rev. Lett. 57 3257 (1986)CrossRefADSGoogle Scholar
  6. [6]
    D Bonatsos et al. Phys. Rev. C 62 024301 (2000)CrossRefADSGoogle Scholar
  7. [7]
    D Bonatsos, P E Georgoudis, N Minkov, D Petrellis and C Quesne Phys. Rev. C 88 034316 (2013)CrossRefADSGoogle Scholar
  8. [8]
    K S Krane: Introductory Nuclear Physics (New York: John Willey and Sons) (1987)Google Scholar
  9. [9]
    P H Regan et al. Phys. Rev. Lett. 90 152502 (2003)CrossRefADSGoogle Scholar
  10. [10]
    D Bonatsos and L D Skouras Phys. Rev. C 43 952R (1991)CrossRefADSGoogle Scholar
  11. [11]
    A M Khalaf and A M Ismail Prog. Phys. 2 98 (2013)Google Scholar
  12. [12]
    F Iachello and A Arima The Interacting Boson Model (England: Cambridge University Press) (1987)CrossRefGoogle Scholar
  13. [13]
    F Iachello Phys. Rev. Lett. 85 3580 (2000)CrossRefADSGoogle Scholar
  14. [14]
    H Ganev, V P Garistov and A I Georgieva Phys. Rev. C 69 014305 (2004)CrossRefADSGoogle Scholar
  15. [15]
    S B Doma and HS EL-Gendy Inter. Jour. Mode. Phys. E 21 1250077 (2012)CrossRefADSGoogle Scholar
  16. [16]
    G Scharff-Goldhaber and J Weneser Phys. Rev. 98 212 (1955)CrossRefADSGoogle Scholar
  17. [17]
    A Bohr and B R Mottelson Mat. Fys. Medd 27 16 (1953)Google Scholar
  18. [18]
    O Scholten et al. Ann. Phys. 115 325 (1978)CrossRefADSGoogle Scholar
  19. [19]
    F Iachello, K Abrahams, K Allaart and A E Dieperink Nuclear Structure (New York: Plenum Press) (1981)Google Scholar
  20. [20]
    R F Casten and D D Warner Rev. Mod. Phys. 60 389 (1988)MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    ENSDF http://www.nndc.bnl.gov/ensdf (Nuclear data sheet) (2009)

Copyright information

© Indian Association for the Cultivation of Science 2015

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure ScienceUniversity of MosulMosulIraq

Personalised recommendations