Advertisement

Indian Journal of Physics

, Volume 87, Issue 6, pp 555–565 | Cite as

(G′/G)-expansion method for two-dimensional force-free magnetic fields described by some nonlinear equations

  • M. A. Abdelkawy
  • A. H. Bhrawy
Original Paper

Abstract

In this paper three nonlinear force-free magnetic field equations such as the Liouville equation, Sine-Poisson equation and Sinh-Poisson equation are studied by (G′/G)-expansion method and exact periodic solutions are extracted. In all these cases the ratio of the current density and the magnetic field is not constant e.g. as happens in the solar atmosphere.

Keywords

(G′/G)-expansion method Force-free magnetic field Magnetostatic equation Plasmas Liouville equation Sine-Poisson equation Sinh-Poisson equation 

PACS Nos.

02.30.Jr 07.05.Bx 87.50.Mn 04.20.Jb 41.20.Gz 

References

  1. [1]
    A H Khater, D K Callebaut and M A Abdelkawy Phys. Plasmas 17 122902 (2010)ADSCrossRefGoogle Scholar
  2. [2]
    H You-Qiu Chin. Astron. Astrophys. 19 229 (1995)ADSCrossRefGoogle Scholar
  3. [3]
    H You-Qiu Chin. Astron. Astrophys. 24 217 (2000)ADSCrossRefGoogle Scholar
  4. [4]
    H You-Qiu and L Lin Chin. Astron. Astrophys. 26 451 (2002)ADSCrossRefGoogle Scholar
  5. [5]
    Amari et al., Sol. Phys. 174 129 (1997)Google Scholar
  6. [6]
    T Z Boulmezaoud and T Amari Math. Comput. Model 34 903 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    E Romashets and M Vandas Adv. Space Res. 36 2268 (2005)ADSCrossRefGoogle Scholar
  8. [8]
    A Biswas and E V Krishnan Indian J. Phys. 85 1513 (2011)ADSCrossRefGoogle Scholar
  9. [9]
    A H Bhrawy, M M Tharwat, A Yildirim and M A Abdelkawy et al., Indian J. Phys. 86 1107 (2012)Google Scholar
  10. [10]
    M L Wang Phys. Lett. A. 199 169 (1990)Google Scholar
  11. [11]
    M L Wang et al., Phys. Lett. A. 216 67 (1996)ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    L Yang et al., Phys. Lett. A.260 55 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    L Yang et al., Phys. Lett. A.278 267 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    E J Parkes and B R Duffy Phys. Lett. A 229 217 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. [15]
    E Fan Phys. Lett. A.277 212 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    H Hirota J. Math. Phys.14 810 (1973)MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    N A Kudryashov Phys. Lett. A 147 287 (1997)MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A Otwinowski et al., Phys. Lett. A 128 483 (1988)MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S K Liu et al., Appl. Math. Mech. 22 326 (2000)CrossRefGoogle Scholar
  20. [20]
    C Yan Phys. Lett. A. 224 77 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    A V Porubov Phys. Lett. A. 221 391 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    A V Porubov and M G Velarde J. Math. Phys. 40 884 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    A V Porubov and D F Parker Wave Motion. 29 97 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    M L Wang X Li and J Zhang Phys. Lett. A 372 4 (2008)MathSciNetGoogle Scholar
  25. [25]
    A Malik, F Chand, H Kumar and S C Mishra Indian J. Phys. 86 129 (2012)Google Scholar
  26. [26]
    A K Malik et al., Appl. Math. Comput..216 2596 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    A K Malik et al., Pramana-J. Phys. 78 513 (2012)ADSCrossRefGoogle Scholar
  28. [28]
    A K Malik et al., Comput. Math. Appl. 64 2850 (2012)MathSciNetCrossRefGoogle Scholar
  29. [29]
    N A Kudryashov and A Pickering J. Phys. A: Math. Gen. 31 9505 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. [30]
    N A Kudryashov J. Phys. A: Math. Gen. 32 999 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations