Indian Journal of Physics

, Volume 86, Issue 8, pp 677–680

Carbon monoxide adsorption on transition element-doped single wall carbon nanotube

  • Ramalingam Kodi Pandyan
  • Sonai Seenithurai
  • Manickam Mahendran
Original paper


The present work focuses on the carbon monoxide (CO) gas adsorption on transition element doped (8, 0) zig-zag single wall carbon nanotube (SWCNT) and pure SWCNT. Density functional theory studies show that Sc, Ti and V doped SWCNTs adsorb CO molecules effectively compared to pure SWCNT. The binding energy of Sc, Ti and V doped SWCNT is 1.31, 1.81 and 0.95 eV, respectively, which is much higher than pure SWCNT. The band structures and density of states of these transition elements show dramatic changes in their structures on doping CO molecules. The band gap of pure SWCNT is 0.7 eV while on doping transition elements and on absorbing CO molecules, it reduces up to 0.35 eV. This study shows that the transition element doped SWCNTs can be used as a good CO molecule absorber at room temperature.


Density functional theory Transition element Adsorption Binding energy Density of states Band structures 


61.48.De 71.15.Dx 71.15.Mb 


  1. [1]
    S Iijima Nature (London) 354 56 (1991)ADSCrossRefGoogle Scholar
  2. [2]
    A G Rinzler et al Science 269 1550 (1995)Google Scholar
  3. [3]
    W A de Heer, A Chatelain and D Ugarte Science 270 1179 (1995)ADSCrossRefGoogle Scholar
  4. [4]
    L A Chernozatonskii et al Chem. Phys. Lett. 233 63 (1995)Google Scholar
  5. [5]
    R Saito, G Dresselhaus, M S Dresselhaus Physical Properties of Carbon Nanotubes (New York: World Scientific) (1998)CrossRefGoogle Scholar
  6. [6]
    J P Lu and J Han Int. J. High Electron. Syst. 9 101 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    C Adessi and M Devel Phys. Rev. B 62 R13314 (2000)ADSCrossRefGoogle Scholar
  8. [8]
    S Han and J Ihm Phys. Rev. B 66 R241402 (2002)ADSCrossRefGoogle Scholar
  9. [9]
    A Buldum and J P Lu Phys. Rev. Lett. 91 236801 (2003)ADSCrossRefGoogle Scholar
  10. [10]
    R Kodi Pandyan, S Seenithurai and M Mahendran Int. J. Hyd. Energy 36 3007 (2011)CrossRefGoogle Scholar
  11. [11]
    K Iyakutti, Y Kawazoe, M Rajarajeswari and V J Surya Int. J. Hyd. Energy. 34 370 (2009)CrossRefGoogle Scholar
  12. [12]
    T Yildirim and S Ciraci Phys. Rev. Lett. 94 175501 (2005)ADSCrossRefGoogle Scholar
  13. [13]
    G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)CrossRefGoogle Scholar
  14. [14]
    J Kong, N R Franklin, C Zhou, M G Chapline, S Peng, K Cho and H J Dai Science 287 622 (2000)ADSCrossRefGoogle Scholar
  15. [15]
    C S Yeung, Y K Chen and Y A Wang J. Nanotechnol. 2010 1 (2010)Google Scholar
  16. [16]
    E Bekyarova, M Davis and T Burch et al J. Phys. Chem. B 108 19717 (2004)CrossRefGoogle Scholar
  17. [17]
    P G Collins, K Bradley, M Ishigami and A Zettl Science 287 1801 (2000)ADSCrossRefGoogle Scholar
  18. [18]
    T Someya, J Small, P Kim, C Nuckolls and J T Yardley Nano Lett. 3 877 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    T Zhang, S Mubeen, N V Myung and M A Deshusses Nanotechnology 19 332001 (2008)CrossRefGoogle Scholar
  20. [20]
    A Modi, N Koratkar, E Lass, B Q Wei and P M Ajayan Nature 424 171 (2003)ADSCrossRefGoogle Scholar
  21. [21]
    E S Snow and F K Perkins Nano Lett. 5 2414 (2005)ADSCrossRefGoogle Scholar
  22. [22]
    D Tasis, N Tagmatarchis, A Bianco and M Prato Chem. Rev. 106 1105 (2006)CrossRefGoogle Scholar
  23. [23]
    S Peng and K Cho Nano Lett. 3 513 (2003)ADSCrossRefGoogle Scholar
  24. [24]
    L B Silva, S B Fagan and R Mota Nano Lett. 4 65 (2004)ADSCrossRefGoogle Scholar
  25. [25]
    J Zhao, A Buldum, J Han and J P Lu Nanotechnology 13 195 (2002)ADSCrossRefGoogle Scholar
  26. [26]
    J A Robinson, E S Snow, T L Reinecke and F K Perkins Nano Lett. 6 1747 (2006)ADSCrossRefGoogle Scholar
  27. [27]
    A Star, V Joshi, S Skarupo, D Thomas and J C P Gabriel J. Phys. Chem. B 110 21014 (2006)CrossRefGoogle Scholar
  28. [28]
    J-X Zhao and Y-H Dinga Mater Chem Phys 110 411–416 (2008)CrossRefGoogle Scholar
  29. [29]
    B Delley J. Chem. Phys. 100 6107 (1996)CrossRefGoogle Scholar
  30. [30]
    R K Thapa, Sandeep, M P Ghimire and Lamuanpuia Indian J. Phys. 85 727 (2011)Google Scholar
  31. [31]
    X-J Kuang, X-Q Wang and G-B Liu Indian J. Phys. 84 245 (2010)ADSCrossRefGoogle Scholar
  32. [32]
    B Indrajit Sharma, J Maibam, R S Paul, R K Thapa and R K Brojen Singh Indian J. Phys. 84 671 (2010)Google Scholar
  33. [33]
    D Sajan, T Kuruvilla, K P Laladhas and I Hubert Joe Indian J. Phys. 85 477 (2011)Google Scholar
  34. [34]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)ADSCrossRefGoogle Scholar
  35. [35]
    S Dag, Y Ozturk, S Ciraci and T Yidirim Phys. Rev. B 72 155404 (2005)ADSCrossRefGoogle Scholar
  36. [36]
    E Durgun, S Dag, V M K Bagci, O Gulseren, T Yildirim and S Ciraci Phys. Rev. B 67 201401 (2003)ADSCrossRefGoogle Scholar
  37. [37]
    H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    N V Chandra Shekar, V Kathirvel and P Ch Sahu Indian J. Phys. 84 485 (2010)ADSCrossRefGoogle Scholar
  39. [39]
    D P Rai, J Hashemifar, M Jamal, Lalmuanpuia, M P Ghimire et al Indian J. Phys. 84 717 (2010)Google Scholar
  40. [40]
    X-J Kuang, X-Q Wang and G-B Liu Indian J. Phys. 85 281 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2012

Authors and Affiliations

  • Ramalingam Kodi Pandyan
    • 1
  • Sonai Seenithurai
    • 1
  • Manickam Mahendran
    • 1
  1. 1.Department of Physics, Smart Materials LaboratoryThiagarajar College of EngineeringMaduraiIndia

Personalised recommendations