Advertisement

Indian Journal of Physics

, Volume 84, Issue 11, pp 1561–1566 | Cite as

Solgel synthesis and structural characterization of silver-silica nanocomposites

  • Sunita Devi
  • M. SrivastvaEmail author
Article

Abstract

The solgel process has been successfully used to prepare silver/silica nanocomposites. After drying in air at 50°C for 30 min, samples were heat treated in air, at 100, 200, 400 and 500°C for the formation of silver nanoparticles. Evolution of silver nano-particles in the amorphous SiO2 matrix as a function of annealing temperature has been studied. Characterizations were made by X-ray diffraction, ultraviolet-visible, and infrared spectroscopy. Mechanisms of silver clusters formation in the densified silica matrix with respect to thermal treatment are discussed.

Keywords

Ag nanoparticles silica gel solgel and temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F Gonella and P Mazzoldi Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (CA: Academic Press) (2000)Google Scholar
  2. [2]
    P Chakraborty J. Mater. Sci. 33 2235 (1998)CrossRefADSGoogle Scholar
  3. [3]
    M R Poulsen, P I Borel, J Fage-Pedersen, J Hubner, M Kristensen, J H Povlsen, K Rottwitt, M Svalgard and W Svendsen Opt. Eng. 42 2821 (2003)CrossRefADSGoogle Scholar
  4. [4]
    A Dhawan and J F Muth Nanotechnology 17 2504 (2006)CrossRefADSGoogle Scholar
  5. [5]
    E Cattauruzza, G Battaglin, F Gonella, G Mattei, P Mazzoldi, R Polloni and B F Scremin App. Surf. Sci. 247 390 (2005)CrossRefADSGoogle Scholar
  6. [6]
    T P Ma and Miyauch Appl. Phys. Lett. 75 88 (1979)CrossRefADSGoogle Scholar
  7. [7]
    R A Weimer, P M Lenahan and T A Marchione Appl. Phys. Lett. 51 1179 (1987)CrossRefADSGoogle Scholar
  8. [8]
    F Orgaz and H Rawson J. Non-Cryst. Solids 82 378 (1986)CrossRefADSGoogle Scholar
  9. [9]
    A Duran, J M Hernaz-Navarro, P Mazon and A Jogar J. Non-Cryst. Solids 82 391 (1986)CrossRefADSGoogle Scholar
  10. [10]
    A Hinsh and A Zastrow J. Non-Cryst. Solids 147 579 (1992)CrossRefADSGoogle Scholar
  11. [11]
    M Menning, J Spanhel, H Schmidt and S Betzholz J. Non-Cryst. Solids 147 329 (1992)ADSGoogle Scholar
  12. [12]
    D Brusilowsky, M Eyal and R Reisfeld Chem. Phys. Lett. 153 203 (1998)CrossRefADSGoogle Scholar
  13. [13]
    Surender Duhan, Sunita Devi and M Shrivastva Indian J. Pure Appl. Phys. 48 271 (2010)Google Scholar
  14. [14]
    G Mie Ann. Phys. 25 377 (1908)CrossRefGoogle Scholar
  15. [15]
    R Bernal, J Manzanares, F J Espinoza-Beltran, R Rammirez-Bon, Y V Vorobiev and J Gonzalez Jpn. J. Appl. Phys. 38 857 (1999)CrossRefADSGoogle Scholar
  16. [16]
    P Shen and M F Thrope Phys. Rev. B15 4030 (1979)ADSGoogle Scholar
  17. [17]
    F L Galeener Phys. Rev. B15 4292 (1979)ADSGoogle Scholar
  18. [18]
    I Simon and H O McMahon J. Chem. Phys. 21 23 (1953)CrossRefADSGoogle Scholar
  19. [19]
    F L Galeener and A E Geissberger Phys. Rev. B27 6199 (1983)ADSGoogle Scholar
  20. [20]
    M Ristic, M Ivanda, S Popovic and S Music J. Non-Cryst. Solids 303 270 (2002)CrossRefADSGoogle Scholar
  21. [21]
    C T Kirk Phys. Rev. B38 1255 (1988)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2010

Authors and Affiliations

  1. 1.Department of ChemistryMeerut CollegeMeerutIndia

Personalised recommendations