Indian Journal of Physics

, Volume 83, Issue 6, pp 787–797

Measurement of uranium and its isotopes at trace levels in environmental samples using mass spectrometry

Article

Abstract

Actinides have widely entered the environment as a result of nuclear accidents and atmospheric weapon testing. These radionuclides, especially uranium, are outstanding radioactive pollutants, due to their high radiotoxicity and long half-lives. In addition to this, since depleted uranium (DU) has been used in the Balkan conflict in 1999, there has been a concern about the possible consequences of its use for the people and environment. Therefore, accurate, precise and simple determination methods are necessary in order to evaluate the human dose and the concentration and effects of these nuclides in the environment. The principal isotopes of uranium e.g.235U and 238U are of primordial origin and 234U present in radioactive equilibrium with 238U. 236U occurs in nature at ultra trace concentrations with a 236U: 238U atom ratio of 10−14. Concentrations of uranium in soil samples were determined using inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratios of uranium were measured using a thermal ionisation mass spectrometer. Radioactive dis-equilibrium of 234/238U, depletion of 235/238U and significant evidence of 236U/238U were noticed in soil samples.

Keywords

Soil 234235236238DU ICP-MS TIMS 

PACS Nos.

91.67.Qr 07.75.+h 92.60.Sz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    UNSCEAR Sources and effects of Ionizing Radiation, Report to the General Assembly, Vol. I. (New York: United Nations) (2000)Google Scholar
  2. [2]
    S R Taylor and S M McLennan Continental Crust: Its Composition and Evolution (London, U K: Blackwell Scientific Publishers) (1985)Google Scholar
  3. [3]
    W Burkart Handbook on the Toxicity of the Inorganic Compounds (eds) H Sigel and H G Seiler (New York: M Dekker) p805 (1988)Google Scholar
  4. [4]
    C R Cothern and W L Lappenbusch Health Phys. 45 89(1983)Google Scholar
  5. [5]
    M I Litaor J. Environ. Qual. 24 314 (1995)CrossRefGoogle Scholar
  6. [6]
    M E Ketterer, W C Wetzel, R R Layman, G Matisoff and E C Bonniwell Environ. Sci. Technol. 54 966 (2000)CrossRefGoogle Scholar
  7. [7]
    A Bleise, P R Dansei and W Burkart J. Environ. Radioactivity 64 93 (2003)CrossRefGoogle Scholar
  8. [8]
    M Ivanovich and R S Harmon Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences (Oxford: Clarendon Press) (1992)Google Scholar
  9. [9]
    S F Boulyga, J S Baker, J L Matusevitch and H J Dietze Int. J. Mass Spectrom. 203 143 (2000)CrossRefGoogle Scholar
  10. [10]
    M Yamamoto, K Shiraishi, K Komura, and K Ueno J. Radioanal. Nucl. Chem. 185 183 (1994)CrossRefGoogle Scholar
  11. [11]
    O J Marsden, F R Livens, J P Day, L K Fifield and P S Goodall Analyst 126 633 (2001)CrossRefADSGoogle Scholar
  12. [12]
    T C Chu and J J Wang Appl. Radiat. Isotopes 48 3619 (1997)CrossRefGoogle Scholar
  13. [13]
    J H Chen and G J Wasserburg Anal. Chem. 53 2060 (1981)CrossRefGoogle Scholar
  14. [14]
    A S Cohen, N S Belshaw and R K O’Nions Int. J. Mass Spectrom. Ion Processes 116 71 (1992)CrossRefADSGoogle Scholar
  15. [15]
    K L Ramakumar, S Jeykumar, R M Rao, L Gnanayyan and H C Jain J. Radioanal. Nucl. Chem. 190 121 (1995)CrossRefGoogle Scholar
  16. [16]
    X Luo, M Rehkamper, D C Lee and A Haliday Int. J. Mass Spectrom. Ion Processes 171 105 (1997)CrossRefADSGoogle Scholar
  17. [17]
    S Ritcher, A Alonso, W De Bolle, R Wellum and P D P Taylor Int. J. Mass Spectrom. 193 9 (1999)CrossRefGoogle Scholar
  18. [18]
    S K Sahoo and A Masuda Proc. Jpn. Acad. 76 151 (2000)CrossRefGoogle Scholar
  19. [19]
    S K Sahoo, H Yonehara, K Kurotaki, K Shiraishi, V Ramzaev and A Barkovski J. Radioanal. Nucl. Chem. 247 341 (2001)CrossRefGoogle Scholar
  20. [20]
    R N Taylor, I W Croudace, P E Warwick and S J Dee Chem. Geol. 144 73 (1998)CrossRefGoogle Scholar
  21. [21]
    P Goodall and C Lythgoe Analyst 124 263 (1999)CrossRefADSGoogle Scholar
  22. [22]
    Z A Palacz, P A Freedman and A J Walder Chem. Geol. 101 157 (1992)Google Scholar
  23. [23]
    K H Wedepohl Geochim. Cosmochim. Acta 59 1217 (1995)CrossRefADSGoogle Scholar
  24. [24]
    J P McLaughlin, L L Vintro, K J Smith, P I Mitchell and Z S Zunic J. Environ. Radioactivity 64 155 (2003)CrossRefGoogle Scholar
  25. [25]
    P R Danesi, A Bleise, W Burkart, T Cabianca, M J Campbell, M Makarewicz, J Moreno, C Tuniz and M Hotchkis J. Environ. Radioactivity 64 121 (2003)CrossRefGoogle Scholar
  26. [26]
    S K Sahoo, K Fujimoto, I Celikovic, P Ujic and Z S Zunic Nucl. Technol. Radiat. Prot. 19 26 (2004)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2009

Authors and Affiliations

  1. 1.Environmental Radiation Effects Research Group, Research Centre for Radiation ProtectionNational Institute of Radiological SciencesChibaJapan

Personalised recommendations