pp 1–6 | Cite as

Optimization of Control Parameters of PMT-Based Photon Counting System

  • Rashtrapriya Kumar Kapri
  • Krishna Rathore
  • P. K. Dubey
  • Ranjana Mehrotra
  • Parag SharmaEmail author
Original Paper


Photomultiplier tube (PMT) is widely used in photon counting systems because of its gain and low light sensing capability in discrete photon region. PMT-based photon counters are used in various fields such as medical, particle counting and sizing, and pollution-level monitoring. The output of photon counter is highly influenced by discriminator threshold, PMT gain and PMT operating temperature. Inappropriate selection of these parameters results in inefficient and highly unstable counts. In this article, the effects on photon counting output due to variation in the above-mentioned parameters have been experimentally studied and discussed. For this purpose, a LabVIEW-based photon counting program was developed for continuous data acquisition using SR400 gated photon counter and further statistical analysis. General methodology of the selection of the above parameters for its optimum performance is explained in detail.


Photon counting Photomultiplier tube PMT temperature Discriminator threshold 



The authors would like to thank the Director, CSIR-National Physical Laboratory, for providing the necessary facilities to carry out the above work. One of the authors, Mr. Rashtrapriya Kumar Kapri, is also thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing the fellowship under CSIR-JRF scheme.


  1. [1]
    Y. Urano, T. Honda and T. Jingu, Defect inspection method, low light detecting method, and low light detector, United States Patent, US 10261026 B2 (2019).Google Scholar
  2. [2]
    C. Vickerman and I.S. Gilmore, Surface analysis the principal techniques, Wiley, Hoboken, (2011).Google Scholar
  3. [3]
    P.A. Morris, R.S. Aspden, J.E. Bell, R.W. Boyd and M.J. Padgett, Imaging with a small number of photons, Nat. Commun., 6 (2015) 5913.1–5913.6.CrossRefGoogle Scholar
  4. [4]
    S. Radhakrishnan, B. Arya, C. Sharma, A. Kumar, S. Mishra and D. Shukla, Studies on low altitude clouds over New Delhi, India using lidar, MAPAN-J. Metrol. Soc. India, 31 (2016) 137–144.Google Scholar
  5. [5]
    P.K. Dubey, S.L. Jain, B.C. Arya and P.S. Kulkarni, Depolarization ratio measurement using single PMT in micro pulse lidar, Rev. Sci. Instrum., 80 (2009) 053111.1–053111.6.CrossRefGoogle Scholar
  6. [6]
    S. Radhakrishnan, B. Arya, C. Sharma, A. Kumar and D. Shukla, Studies on lower tropospheric aerosols over New Delhi, India using lidar, MAPAN-J. Metrol. Soc. India, 32 (2017) 183–191.Google Scholar
  7. [7]
    R. Maurya, P. Dubey, D. Shukla, A. Kumar, B. Arya and S. Jain, Comparison of indigenously developed micro pulse polarization lidar with EZ lidar profiles, Appl. Phys. B, 104 (2011) 975–982.ADSCrossRefGoogle Scholar
  8. [8]
    G. Messin, B. Sanders, D. Petrosyan and J. Rarity, Few-photon optics, J. Phys. B: Atom. Mol. Opt. Phys., 42(2009) 110201.1.Google Scholar
  9. [9]
    N. Salansky and N. Filonenko, Method for localized low energy photon therapy (LEPT)United States Patent, US 6494900 B1 (2002).Google Scholar
  10. [10]
    W. Becker, Advanced time-correlated single photon counting techniques, Springer, New York, p 81 (2005) .CrossRefGoogle Scholar
  11. [11]
    R.A. Borders, J.W. Birks and J.A. Borders, High speed pulse amplifier/discriminator counter for photon counting. Anal. Chem. 52 (1980) 1273–1278.CrossRefGoogle Scholar
  12. [12]
    W. Gunter, G. Grant and S. Shaw, Optical devices to increase photocathode quantum efficiency, Appl. Opt. 9 (1970) 251–257.ADSCrossRefGoogle Scholar
  13. [13]
    See for SR400 datasheet.
  14. [14]
    See for LaserStar datasheet.
  15. [15]
    W.J. Stryjewski, Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer, Rev. Sci. Instrum., 62 (1991) 1921–1925.ADSCrossRefGoogle Scholar
  16. [16]
    H. Yang, G. Zheng, R. Zhang, F.-l. Yu and D.-Q. Blan, Dynamic light scattering system based on photon counting developed by LabVIEW, Acta Photon. Sin., 36 (2007) 170–173.Google Scholar
  17. [17]
    H.I. Ali, A.M. Hassan and A.F. Lutfi, A LabVIEW based counting photons existence in the light, Int. J. Eng. Technol., 1 (2009) 1793–8236,27–33.Google Scholar
  18. [18]
    P. Dubey, S. Jain, B. Arya and P. Kulkarni, Discriminator threshold selection logic to improve signal to noise ratio in photon counting, MAPAN-J. Metrol. Soc. India, 25 (2010) 63–70.Google Scholar
  19. [19]
    P. Koczyk, P. Wiewior and C. Radzewicz, Photon counting statistics—Undergraduate experiment, Am. J. Phys., 64 (1996) 240–245.ADSCrossRefGoogle Scholar
  20. [20]
    P. Coates, Photomultiplier noise statistics, J. Phys. D: Appl. Phys., 5 (1972) 915–930.ADSCrossRefGoogle Scholar
  21. [21]
    F. Arecchi and V. Degiorgio, Statistical properties of laser radiation during a transient buildup, Phys. Rev. A, 3 (1971) 1108–1123.ADSCrossRefGoogle Scholar
  22. [22]
    M.R. Young and S. Singh, Statistical properties of a laser with multiplicative noise, Opt. Lett. 13 (1988) 21–23.ADSCrossRefGoogle Scholar
  23. [23]
    See R647 PMT datasheet.
  24. [24]
    M.D. Adams, Lidar design, use and calibration concepts for correct environmental detection, IEEE Trans. Robot. Autom., 20 (1999) 1–9.Google Scholar
  25. [25]
    A. Wright, An investigation of photomultiplier background, J. Phys. E: Sci. Instrum., 16 (1983) 300–307.ADSCrossRefGoogle Scholar
  26. [26]
    R. Abbasi, Y. Abdou, T. Abu-Zayyad, J. Adams, J. Aguilar, M. Ahlers, et al., Calibration and characterization of the Ice Cube photomultiplier tube, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 618 (2010) 139–152.ADSCrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  • Rashtrapriya Kumar Kapri
    • 1
    • 2
  • Krishna Rathore
    • 2
  • P. K. Dubey
    • 1
    • 3
  • Ranjana Mehrotra
    • 1
    • 2
  • Parag Sharma
    • 1
    • 2
    Email author
  1. 1.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
  2. 2.Optical Radiation Metrology SectionCSIR-National Physical LaboratoryNew DelhiIndia
  3. 3.Pressure, Vacuum and Ultrasonic MetrologyCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations