, Volume 34, Issue 3, pp 357–369 | Cite as

Measurement Uncertainty in Microphone Free-Field Comparison Calibrations

  • N. GargEmail author
  • P. Surendran
  • M. P. Dhanya
  • A. T. Chandran
  • M. Asif
  • M. Singh
Original Paper


The present study demonstrates the use of a transportable anechoic chamber for conducting microphone free-field calibrations with lowest levels of uncertainty. A dedicated transportable anechoic chamber (make SPEKTRA, Germany) of internal volume of 2 m3 completely lined with wedge-shaped absorbers is utilized for free-field calibrations in the frequency range of 125 Hz–20 kHz using the substitution method as per the IEC 61094-8 standard. The study has identified the usable working space inside a free-field chamber using the inverse-square pressure law, and the deviations from the inverse-square law of the free-field chamber are quantified. The measurement uncertainty of ± 0.36–0.52 dB (k = 2, 95% confidence level) is evaluated in the frequency range of 125 Hz–20 kHz and is validated in a bilateral comparison. The application of Monte Carlo simulation approach in the evaluation of measurement uncertainty in microphone free-field calibrations is also demonstrated.


Microphone free-field calibration Monte Carlo simulation (MCS) Law of propagation of uncertainty (LPU) 



Authors thank Dr D. K. Aswal, Director, CSIR-National Physical Laboratory, India, and Dr. Sanjay Yadav, Head, Physico-Mechanical Metrology Division, for providing the necessary infrastructural support for the study and granting permission to publish the paper. The authors also wish to place on record their gratitude and thanks to Dr. Jacob Chandapillai, Director, FCRI, Palakkad, and Dr. S Rammohan, Head, Noise and Vibration facility, for allowing to do this study and publish the paper. Authors would also recognize the efforts, innovation and support of M/s SPEKTRA Schwingungstechnik und Akustik GmbH Dresden, Germany, in developing a small anechoic chamber at M/s FCRI, Palakkad. Authors also acknowledge the SPEKTRA Manual (published by Bühn and Begoff) of MUB estimation of CS18 FF system used for uncertainty budget calculations and for identification of the usable working space inside a free-field chamber using the inverse-square pressure law.


  1. [1]
    S. Barrera Figueroa, A. Torras Rosell, K. Rasmussen, F. Jacobsen and V.C. Henrίquez, A practical implementation of microphone free-field comparison calibration according to the standard IEC 61094-8. In INTER-NOISE 2012 Proceedings Acoustical Society of America.Google Scholar
  2. [2]
    S. Barrera-Figueroa, K. Rasmussen and F. Jacobsen, On experimental determination of the free-field correction of laboratory standard microphones at normal incidence, Metrologia 44 (2007) 57–63.ADSCrossRefGoogle Scholar
  3. [3]
    E. Frederiksen, Acoustic metrology-an overview of calibration methods and their uncertainties, Int. J. Metrol. Qual. Eng., 4 (2013) 97–107.CrossRefGoogle Scholar
  4. [4]
    International Standard, IEC 61094-8, Methods for determining the free-field sensitivity of working standard microphones by comparison (2012).Google Scholar
  5. [5]
    H. Weissing and H. Nicklich, Free-field calibration of microphones and sound level meters in Anechoic chambers, Proceedings CFA/DAGA 2004, Strasbourg.Google Scholar
  6. [6]
    H. Weissing, Calibration of microphones and sound level meters in an anechoic chamber, VFI, Der Versuch-und Farschungsingenieur (in German), (p. 1) (2003).Google Scholar
  7. [7]
    CS18 FF Free-Field calibration system, SPEKTRA Schwingungstechnik und Akustik GmbH Dresden, Germany.
  8. [8]
    Fluid Control Research Institute, Kerala, India.
  9. [9]
    K.A. Cunefare, V.B. Biesel, J. Tran, R. Rye, A. Graf, M. Holdhusen and A.M. Albanese, Anechoic chamber qualification: traverse method, inverse square law analysis method, and nature of test signal, J. Acoust. Soc. Am., 113 (2003) 881–892.ADSCrossRefGoogle Scholar
  10. [10]
    International Standard, ISO 26101:2012, Acoustics-Test methods for the qualification of free-field environments (2012).Google Scholar
  11. [11]
    Joint Committee for Guides in Metrology (JCGM 100:2008), Evaluation of measurement data—Guide to the expression of uncertainty in measurement.Google Scholar
  12. [12]
    U. Bühn and P. Begoff, Measurement uncertainty budget for measurand sound pressure with sinusoidal excitation by SPEKTRA (Secondary Calibration), Germany-2015-05/edition 09.Google Scholar
  13. [13]
    N. Garg, A. Kumar, M.A. Sanjid and K.P. Chaudhary, Reaffirmation of measurement uncertainty in pressure sensitivity determination of LS2P microphones by reciprocity method, Measurement, 51 (2014) 281–288.CrossRefGoogle Scholar
  14. [14]
    N. Garg and O. Sharma, Measurement accuracy of secondary standards of sound pressure in comparison to primary standards, J. Metrol. Soc India, 27 (2012) 219–229.Google Scholar
  15. [15]
    Properties and Calibration of laboratory Standard microphones, Uncertainty in microphone frequency responses, B&K report, (2001).
  16. [16]
    K. Rasmussen, The static pressure and temperature coefficients of laboratory standard microphones, Metrologia 36 (1999) 265–273.ADSCrossRefGoogle Scholar
  17. [17]
    M. Zemar, D. Soares, S. Gerges and M. Vorlände, Microphone and sound level meter calibration in free field by a new method, XVIII IMEKO World Congress, Metrology for a Sustainable Development, September, 17–22, 2006, Rio de Janeiro, Brazil.
  18. [18]
    V.C. Henrίquez and K. Rasmussen, Final report on the key comparison, CCAUV.A-K3, Metrologia, Volume 43, Technical Supplement.Google Scholar
  19. [19]
    D.W. Braudaway, Uncertainty specification for data acquisition (DAQ) devices, IEEE Trans. Instrum. Meas. 55(1), (2006) 74–78.CrossRefGoogle Scholar
  20. [20]
    M.A. Herrador and A.G. González, Evaluation of measurement uncertainty in analytical assays by means of Monte-Carlo simulation, Talanta, 64 (2004) 415–422.CrossRefGoogle Scholar
  21. [21]
    I.T. Dimov, Monte Carlo method for applied scientist, World Scientific Publishing Co., (pp. 67–132) (2008).Google Scholar
  22. [22]
    K. Shahanaghi and P. Nakhjiri, A new optimized uncertainty evaluation applied to the Monte-Carlo simulation in platinum resistance thermometer calibration, Measurement, 43 (2010) 901–911.CrossRefGoogle Scholar
  23. [23]
    T.H. Click, G.A. Kaminski and A.B. Liu, Quality of random number generators significantly affect results of Monte Carlo simulations for organic and biological systems, J. Comput. Chem., 32(3) (2011) 513–524.CrossRefGoogle Scholar
  24. [24]
    A.G. Gonzalez, M.A. Herrador and A.G. Asuero, Uncertainty evaluation from Monte Carlo simulations by using Crystal Ball software, Accred. Qual. Assur., 10 (2005) 149–154.CrossRefGoogle Scholar
  25. [25]
    I. Farrance and R. Frenkel, Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties though functional relationships including uncertainties in empirically derived constants, Clin. Biochem. Rev., 35(1) (2014) 37–61.Google Scholar
  26. [26]
    F. Galliana and M. Del Moro, The strategic role of inter-laboratory comparison among international institutions to assure confidence: report of the inrim and the European spatial agency comparison on electrical quantities, MAPAN-J. Metrol. Soc. India, 33(1) (2018) 77–82.Google Scholar
  27. [27]
    N. Garg, Establishing a traceability chain for sound pressure and vibration amplitude measurements, NCSLI measure, J. Meas. Sci. 10(1) (2015) 68–78.CrossRefGoogle Scholar
  28. [28]
    S. Yadav, A. Zafer, A. Kumar, N.D. Sharma and D.K. Aswal, Role of national pressure and vacuum metrology in indian industrial growth and their global metrological equivalence, MAPAN-J. Metrol. Soc. India, 33(4) (2018) 347–359.Google Scholar
  29. [29]
    V.C. Henrίquez and K. Rasmussen, Final report on the key comparison, CCAUV.A-K3, Metrologia 43(1A, 09001) (2006) 1–84.Google Scholar
  30. [30]
    G. Moona, M. Jewariya and R. Sharma, Relevance of dimensional metrology in manufacturing industries, MAPAN J. Metrol. Soc. India, 34(1) (2019) 97–104.Google Scholar
  31. [31]
    A. Biber, Primary level hydrophone calibration system based on PC oscilloscope, MAPAN J. Metrol. Soc. India, 33(4) (2018) 361–367.Google Scholar
  32. [32]
    D. Hermawanto, C.C. Putri, B. Dwisetyo, N.R. Prasasti, M.R. Palupi and D. Rusjadi, Development of decibel stepped attenuator for automated sound level meter calibration, MAPAN J. Metrol. Soc. India (2019). Scholar
  33. [33]
    N. Garg and M.I. Schieffer, Low frequency accelerometer calibration using an optical encoder sensor, Measurement, 111 (2017) 226–233.CrossRefGoogle Scholar
  34. [34]
    Z. Liu, C. Cai, M. Yu and M. Dong, Testing of accelerometer transverse sensitivity using elliptical orbits, MAPAN J. Metrol. Soc. India, 33(3) (2018) 217–226.Google Scholar
  35. [35]
    J. Swami and T. John, Characterization of capacitance standards at high frequency at National Physical Laboratory, India, MAPAN J. Metrol. Soc. India 33(2) (2018) 131–137.Google Scholar
  36. [36]
    N. Garg and S. Maji, A retrospective view of noise pollution control policy in India: status, proposed revisions and control measures, Curr. Sci. 111(1) (2016) 29–38.CrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  • N. Garg
    • 1
    Email author
  • P. Surendran
    • 2
  • M. P. Dhanya
    • 2
  • A. T. Chandran
    • 2
  • M. Asif
    • 1
  • M. Singh
    • 1
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Fluid Control Research Institute (FCRI)PalakkadIndia

Personalised recommendations