Advertisement

MAPAN

pp 1–8 | Cite as

Design and Development of Cost-Effective System for the Measurement of Dielectric Constant of Ceramic Materials Using PIC Microcontroller

  • M. Vishnu Chittan
  • Mani Kumar ChimpineniEmail author
  • B. Rajesh Kumar
  • D. Sailaja
Original Paper
  • 15 Downloads

Abstract

In the present work, a simple and low-cost instrument is designed to measure the dielectric constant of ceramic materials using the impedance analyser IC AD5933. The AD5933 is highly accurate impedance converter, which provides the impedance value of the sample with respect to different frequencies. The capacitance and dielectric constant values of the prepared samples are derived from the impedance. A PIC microcontroller is used to interface the circuitry of the impedance analyser and display the measured data on the LCD. In addition, the measured data are exhibited on the serial console of the microcontroller. The measured values were compared with standard impedance analysing device HIOKI-LCR Hi-tester353250.

Graphical Abstract

Keywords

PIC microcontroller AD5933 circuit Impedance Capacitance Dielectric constant 

Notes

References

  1. [1]
    P. Singh, A. Kumar and D. Kaur, Substrate effect on texture properties of nano crystalline TiO2 thin films, Physica B, 403 (2008), 3769–3773.  https://doi.org/10.1016/j.physb.2008.07.021 ADSCrossRefGoogle Scholar
  2. [2]
    W. Gao and Z. Li, ZnO thin films produced by magnetron sputtering, Ceram. Int., 30 (2004) 1155–1159.  https://doi.org/10.1016/j.ceramint.2003.12.197.CrossRefGoogle Scholar
  3. [3]
    P. Singh, A. Kumar, D. Kaur and Deepak, ZnO nano crystalline powder synthesized by ultrasonic mist-chemical vapour deposition, Opt. Mater. 30 (2008) 1316–1322.  https://doi.org/10.1016/j.optmat.2007.06.012.ADSCrossRefGoogle Scholar
  4. [4]
    M.R. Vaezi, Two step solo chemical synthesis of ZnO/TiO2 Nano composite materials, J. Mater. Process. Technol., 205 (2008) 332–337.  https://doi.org/10.1016/j.jmatprotec.2007.11.122.CrossRefGoogle Scholar
  5. [5]
    P. SriLakshmi, N.L. Das and C. Manikuamar, Low-cost wireless instrumentation for monitoring humidity, wind speed, and direction, Instrum. Sci. Technol., 45 (2017) 479–485.  https://doi.org/10.1080/10739149.2016.1277534.CrossRefGoogle Scholar
  6. [6]
    D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng. B, 80 (2001) 383–387.  https://doi.org/10.1016/s0921-5107(00)00604-8.CrossRefGoogle Scholar
  7. [7]
    J.M. Jung, M. Wang, E.J. Kim and S.H. Hahn, Photocatalytic properties of Au/TiO2 thin films prepared by RF magnetron sputtering, Vacuum 82 (2008) 827–832.  https://doi.org/10.1016/j.vacuum.2007.11.011.
  8. [8]
    F.H. Dulin and D.E. Rase, Phase equilibria in the system ZnO-TiO2, J. Am. Ceram. Soc., 43 (1960) 125–131.  https://doi.org/10.1111/j.1151-2916.1960.tb14326.x.CrossRefGoogle Scholar
  9. [9]
    U. Stenike, B. Wallis, Cryst. Res. Technol., 32 (1997) 187–193.  https://doi.org/10.1002/crat.2170320119.CrossRefGoogle Scholar
  10. [10]
    T.P.K Chabowski, Simple wide frequency range impedance meter based on AD5933 Integrated chip, Metrol. Meas. Syst., 22 (2015) 13–24.  https://doi.org/10.1515/mms-2015-0006.CrossRefGoogle Scholar
  11. [11]
    M. Vishnu Chittan, C. Mani Kumar and B. Rajesh Kumar, X-ray peak profile analysis and microstructural characterization of solid state sintered TiO2 doped ZnO ceramics, Mater. Today Proc. 4 (2017) 2879–2886.  https://doi.org/10.1016/j.matpr.2017.02.168.CrossRefGoogle Scholar
  12. [12]
    D. Ibrahim, PIC32 Microcontrollers and the Digilent Chipkit Introductory to Advanced Projects, Newnes, 2015, pp. 15–60.  https://doi.org/10.1016/B978-0-08-099934-0.00002-8.
  13. [13]
    P. Wandowski, P. Mallinowski and W. Ostachowicz, Calibration problem of AD5933 device for electromechanical impedance measurements, In Proceedings for EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, (2014), 480–487. https://hal.inria.fr/hal-01020384.
  14. [14]
    V. Nguyen and A. Dugenske, An I2C based architecture for monitoring legacy manufacturing equipment, Manuf. Lett., 15 (2018) 67–70.  https://doi.org/10.1016/j.mfglet.2017.12.018.CrossRefGoogle Scholar
  15. [15]
    A.E. Allen, R. Storchi, F.P. Martial, R.A. Bedford and R.J. Lucas, Melanopsin contributions to the representation of images in the early visual system, Curr. Biol., 27 (2017), Elsevier Ltd. http://dx.doi.org/10.1016/j.cub.2017.04.046.
  16. [16]
    O.A. Desouky and K.E Rady, Improvement of sintering, nonlinear electrical and dielectric properties of ZnO-based varistors doped with TiO2, Chin. Phys. B 25 (2016) 068402/1-6.  https://doi.org/10.1088/1674-1056/25/6/068402.CrossRefGoogle Scholar
  17. [17]
    K. Omar, M.D.J. Ooi and M.M. Hassin, Investigation of dielectric constant of zinc oxide, Mod. Appl. Sci., 3 (2009) 110–116.  https://doi.org/10.5539/mas.v3n2p110.Google Scholar
  18. [18]
    B. Rajesh Kumar, B. Hymavathi and T. Subba Rao, Effect of alumina dopant on structural, surface morphological and dielectric properties of ZnO for photovoltaic applications, In AIP conference proceedings, vol 1992(1) (2018) 040005.  https://doi.org/10.1063/1.5047970.

Copyright information

© Metrology Society of India 2019

Authors and Affiliations

  1. 1.Department of Electronics and PhysicsGIS, GITAM (Deemed to be University)VisakhapatnamIndia
  2. 2.Department of Engineering PhysicsGIT, GITAM (Deemed to be University)VisakhapatnamIndia
  3. 3.Department of PhysicsS.S.B.N. Degree College (Autonomous)AnantapuramIndia

Personalised recommendations