Skip to main content
Log in

Calibration of Endoscopic Systems Coupled to a Camera and a Structured Light Source

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

We propose a calibration method for measuring accurate 3D coordinates inside hollow parts using an endoscopic system consisting of a fiberscope, a camera coupled to the eyepiece of the fiberscope, and a power LED adjusted to the front end of the fiberscope’s bundle. The power LED was adapted to generate a structured light plane (SLP). The calibration method reduces the uncertainty of intrinsic camera parameters by using a traceable printed pattern fixed to a glass flat. The extrinsic camera parameters or SLP position and orientation (POSE) on the camera system are assessed with the projection of the SLP on printed flats. Part of the SLP POSE is the SLP to camera distance, which is measured and adjusted using calibrated ring gauges as follows: we projected the SLP on the inner surface of a calibrated ring gauge, then we obtained the parameters of the circumference (i.e. its diameter) and compared it to the calibrated parameters. Next, we adjusted the distance of interest until measured and calibrated ring parameters were close enough. Using this calibration method, we measured the diameter of several ring gauges and a break master cylinder, finding an average error between \({\pm }\,{0.03}\) mm with a diameter uncertainty around 0.055 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, and A. Weckenmann, Computed tomography for dimensional metrology, CIRP Ann. Manuf. Technol., 60 (2011) 821–842, https://doi.org/10.1016/j.cirp.2011.05.006

    Article  Google Scholar 

  2. J. Hiller, M. Maisl, and L.M. Reindl, Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications, Meas. Sci. Technol., 23 (2012), https://doi.org/10.1088/0957-0233/23/8/085404

  3. A.Müller, M. Schubert, and E. Beleites, Noncontact three-dimensional laser measuring device for tracheoscopy. Ann. Otol. Rhinol. Laryngol., 111 (2002) 821–827, https://doi.org/10.1177/000348940211100911

    Article  Google Scholar 

  4. W.V. Dörffel, Y.T. Sugano, D. Stalling, L. Coconu, D. Hentschel, G. Linss, and Ch. Witt, Laser-based endoscopic measurement of airway dimensions, Pneumologie, 57 (2003) 503–509, https://doi.org/10.1055/s-2003-42220

    Article  Google Scholar 

  5. M. Hayashibe, N. Suzuki, and Y. Nakamura, Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management, Med Image Anal., 10 (2006) 509–519, https://doi.org/10.1016/j.media.2006.03.001

    Article  Google Scholar 

  6. G. Biegelbauer, and M. Vincze, 3D vision-guided bore inspection system. IEEE International Conference on Computer Vision Systems, 2006 ICVS’06, (2006) pp. 22–22, https://doi.org/10.1109/ICVS.2006.1

  7. J.P. Williamson, A.L. James, M.J. Phillips, D.D. Sampson, D.R. Hillman, and P.R. Eastwood, Quantifying tracheobronchial tree dimensions: methods, limitations and emerging techniques, Eur. Respir. J., 34 (2009) 42–55, https://doi.org/10.1183/09031936.00020408

    Article  Google Scholar 

  8. C. Schmalz, F. Forster, A. Schick, and E. Angelopoulou, An endoscopic 3D scanner based on structured light, Med. Image Anal., 16 (2012) 1063–1072, https://doi.org/10.1016/j.media.2012.04.001

    Article  Google Scholar 

  9. H.D. Ford, and R.P. Tatam, Passive OCT probe head for 3D duct inspection, Meas. Sci. Technol., 24 (2013) https://doi.org/10.1088/0957-0233/24/9/094001

  10. J. Geng, and J. Xie, Review of three-dimensional endoscopic surface imaging techniques, IEEE Sens. J., 14 (2014) 945–959, https://doi.org/10.1109/JSEN.2013.2294679

    Article  ADS  Google Scholar 

  11. ASME B89.1.6-2002, Measurement of Plain Internal Diameters for Use as Master Rings or Ring Gauges, (2002)

  12. R. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE J. Robot. Autom., RA-3 (1987) 323–344, https://doi.org/10.1109/JRA.1987.1087109

  13. E. Trucco, and A. Verri, Introductory Techniques for 3-D Computer Vision, Prentice Hall Editorial, Upper Saddle River, (1998) pp. 123–138.

    Google Scholar 

  14. Z. Zhang, Flexible camera calibration by viewing a plane from unknown orientations, Proceedings of the Seventh IEEE International Conference on Computer Vision, (1999) pp. 666–673, https://doi.org/10.1109/ICCV.1999.791289

  15. S. Rupp, C. Winter, and T. Wittenberg, Camera Calibration from Fiberscopic Views with Accuracy Evaluation, Bild Für Die Medizin, (2006) pp. 424–428, https://doi.org/10.1007/3-540-32137-3_86

  16. J.Y. Bouguet, Camera calibration toolbox for MatLab URL http://www.vision.caltech.edu/bouguetj/calib_ doc/index.html [accessed 07.10.16], 2016

  17. J. Heikkila, Geometric Camera calibration using circular control points, IEEE Trans. Pattern Anal. Mach. Intell., 22 (2000) 1066–1077, https://doi.org/10.1109/34.879788.

    Article  Google Scholar 

  18. J.P. Barreto, J. Roquette, P. Sturm, and F. Fonseca, Automatic Camera Calibration Applied to Medical Endoscopy, Proceedings of the British Machine Vision Conference, (2009) pp. 52.1–52.10, https://doi.org/10.5244/C.23.52

  19. A. Datta, J.S. Kim, and T. Kanade, Accurate camera calibration using iterative refinement of control points, IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), (2009) pp. 1201–1208, https://doi.org/10.1109/ICCVW.2009.5457474

  20. R. Melo, J.P. Barreto, and G. Falcão, A new solution for camera calibration and real-time image distortion correction in medical endoscopy-initial technical evaluation, IEEE Trans. Biomed. Eng., 59 (2012) 634–644, https://doi.org/10.1109/TBME.2011.2177268

    Article  Google Scholar 

  21. Z. Tang, Z. von Gioi R. Grompone, P. Monasse, and J.M. Morel, High-precision camera distortion measurements with a calibration harp, J. Opt. Soc. Am., 29 (2012) 2134–2143, https://doi.org/10.1364/JOSAA.29.002134

    Article  ADS  Google Scholar 

  22. R. Usamentiaga, J. Molleda, and D. Garcia, Structured-Light Sensor Using Two Laser Stripes for 3D Reconstruction without Vibrations, Sensors, 14 (2014) 20041–20063, https://doi.org/10.3390/s141120041

    Article  Google Scholar 

  23. C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, & T. Wittenberg, Automatic adaptive enhancement for images obtained with fiberscopic endoscopes, IEEE Trans. Biomed. Eng., 53 (2006), 2035–2046, https://doi.org/10.1109/TBME.2006.877110

    Article  Google Scholar 

  24. O. Icasio-Hernández, J.J. Gonzalez-Barbosa, J.B. Hurtado-Ramos, and M. Viliesid-Alonso, 3D reconstruction of hollow parts analyzing images acquired by a fiberscope, Meas. Sci. Technol., 25 (2014) https://doi.org/10.1088/0957-0233/25/7/075402

  25. GUM BIPM, Evaluation of Measurement Data, Guide to the Expression of Uncertainty in Measurement (JCGM 100) (Paris: BIPM), (2008)

  26. ISO 15530:3 2011, Geometrical Product Specification (GPS), Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement, Part 3: Use of calibrated workpieces or measurement standards, (2011)

Download references

Acknowledgements

Authors wish to thank the National Council of Science and Technology (CONACYT) for the financial support grated through grant number 339890. Likewise, we specially acknowledge Instituto Politécnico Nacional through project SIP-20181104 and Centro Nacional de Metrología (CENAM) through SIDEPRO program for provided facilities and materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Icasio-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Icasio-Hernández, O., Hurtado-Ramos, J.B. & Gonzalez-Barbosa, JJ. Calibration of Endoscopic Systems Coupled to a Camera and a Structured Light Source. MAPAN 34, 143–157 (2019). https://doi.org/10.1007/s12647-018-0288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-018-0288-y

Keywords

Navigation