Skip to main content
Log in

Role of National Pressure and Vacuum Metrology in Indian Industrial Growth and Their Global Metrological Equivalence

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The pressure and vacuum metrology group of National Physical Laboratory (NPL) has a strong role in metrological research and development in India because of its importance to the nation’s economy as well as the constitutional obligation following NPL charter of developing and maintaining national standards of pressure and vacuum measurements. Although, the group is successfully fulfilling its national duties, providing national calibration and measurement services since last 35 years, admittedly still there is lack of awareness, misinformation, and penetration of Calibration and Measurement Capabilities (CMCs) to the end users, grass root level industries, academician and Govt. laboratories. Occasionally, we are receiving feedbacks of such grey areas of awareness. Therefore, it was considered appropriate to compile the information of all these CMCs, expertise, training potential and available developed technologies in this article. The present paper also describes the summary of some of the results obtained in recent international key comparison exercises which have helped us to improve the quality in pressure metrology with a measure of technical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Pavese and G. Molinar, Modern gas-based temperature and pressure measurement, Plenum Press (1992), 273–356.

  2. P.L.M. Heydemann and W.E. Welch, Piston gauges in experimental thermodynamics volume II, London-Butterworths (1975).

  3. R.S. Dadson, S.L. Lewis and G.N. Peggs, The pressure balance: theory and practice, Her Majesty’s Stationary Office (1982).

  4. J.K.N. Sharma, K.K. Jain and A. K. Bandyopadhyay, Characterization of a controlled clearance piston gauge using different working fluids up to 5 MPa, Jpn. J. Appl. Phys., 27 (1988) 843–848.

    Article  ADS  Google Scholar 

  5. A.C. Gupta, D.R. Sharma and J.K.N. Sharma, Intercomparison of pressure standards in the barometric region, MAPAN-J. Metrol. Soc India, 11(1) (1996) 3–6.

    Google Scholar 

  6. P. Mohan and A.C. Gupta, Use of a calibrated leak to calibrate vacuum gauges, Vacuum 48(6) (1997) 515–519.

    Article  Google Scholar 

  7. P. Mohan and A.C. Gupta, Vacuum gauge calibration at the NPL (India) using orifice flow method, Vacuum 51(1) (1998) 69–74.

    Article  ADS  Google Scholar 

  8. K. Bandyopadhyay, A.C. Gupta, Realization of a national practical pressure scale for pressures up to 500 MPa, Metrologia, 36 (1999) 681–688.

    Article  ADS  Google Scholar 

  9. S. Yadav, A.K. Bandyopadhyay, V.K. Gupta and A.C. Gupta, A reliable quartz digital transfer pressure standard for high pressure measurements up to 275 MPa, J. Instrum. Soc. India, 30 (1) (2001) 43–51.

    Google Scholar 

  10. S.Yadav, A.K. Bandyopadhyay, N. Dilawar and A.C. Gupta, Re-establishment of measurement uncertainty in pressure measurement through in-house laboratory intercomparison of national hydraulic pressure standards up to 500 MPa, MAPAN-J. Metrol. Soc India, Suppl. 1 (2001), 170 – 177.

    Google Scholar 

  11. S. Yadav, A.K. Bandyopadhyay, V.K. Gupta and A.C. Gupta, On the traceability and stability of a hydraulic transfer pressure standard up to 140 MPa, MAPAN-J. Metrol. Soc India, 17 (1) (2002) 3–10.

  12. S. Yadav, A.K. Bandyopadhyay, N. Dilawar and A.C. Gupta, Intercomparison of national hydraulic pressure standards up to 500 MPa, Measurement + Control, 35 (2002) 47–51.

    Google Scholar 

  13. P. Mohan, Vacuum measurements by some primary and transfer standards, MAPAN-J. Metrol. Soc India, 17 (2002) 119–132.

    Google Scholar 

  14. P. Mohan, D.R. Sharma and A.C. Gupta, Comparison of an ultrasonic interferometer manometer and a static expansion system using a capacitance diaphragm gauge, Metrologia 33(2) (2003) 165.

    Article  ADS  Google Scholar 

  15. S. Yadav, R. Agarwal, B. Surekha, A.K. Bandyopadhyay and A.C. Gupta, Modern instrumentation techniques in pressure metrology under static conditions, MAPAN-J. Metrol. Soc India, 18 (2003) 57–82.

    Google Scholar 

  16. N. Dilawar, D. Varandani, A.K. Bandyopadhyay and A.C. Gupta, Characterization of a pneumatic differential pressure standards, Metrologia 40 (2003) 1–10.

    Article  Google Scholar 

  17. D.R. Sharma, Pressure drop during measurement in liquid displacement gas flowmeter of improved design, Vacuum, 70 (2003) 563–573.

    Article  ADS  Google Scholar 

  18. S. Yadav, A.K. Bandyopadhyay and A.C. Gupta, Characterisation of national hydraulic pressure standards in the pressure ranges up to 100 MPa, 200 MPa and 500 MPa, Callab- The International J. Metrology, 1 (2003) 28–35.

    Google Scholar 

  19. A.K. Bandyopadhyay and D.A. Olson, Characterization of a compact 200 MPa controlled clearance piston gauge as a primary pressure standard using the Heydemann and Welch method, Metrologia, 43 (2006) 573–582.

    Article  ADS  Google Scholar 

  20. D.R. Sharma and D.A. Vijayakumar, Evaluation of uncertainty in pressure and vacuum measurements using direct comparison and least square error fitting methods, MAPAN-J. Metrol. Soc India, 21 (2006) 23–36,.

    Google Scholar 

  21. D.R. Sharma and D.A. Vijayakumar, Re-evaluation of measurement uncertainty of ultrasonic interferometer manometer, a primary pressure standard established at NPL, India, MAPAN-J. Metrol. Soc India, 21 (2006) 37–46.

    Google Scholar 

  22. A.K. Bandyopadhyay, S. Yadav and N. Dilawar, Current status of pressure standards at NPLI and our experiences with the key comparison data base (KCDB), MAPAN-J. Metrol. Soc India, 21 (2006) 127–145.

    Google Scholar 

  23. S. Yadav, O. Prakash, V.K. Gupta and A.K. Bandyopadhyay, The effect of pressure-transmitting fluids in the characterization of a controlled clearance piston gauge up to 1 GPa, Metrologia, 44 (2007) 222–223.

    Article  ADS  Google Scholar 

  24. S. Dogra, S. Yadav and A.K. Bandyopadhyay, Computer simulation of a 1.0 GPa piston-cylinder assembly using finite element analysis (FEA), Measurement 43 (2010)1345–1354.

    Article  Google Scholar 

  25. P. Mohan and H. Kumar, Static expansion primary vacuum standard — Part 1: Determination of the volume ratio of the expansion stage, MAPAN-J. Metrol. Soc India, 24(2) (2009) 101–109.

    Google Scholar 

  26. P. Mohan and H. Kumar, Static expansion primary vacuum standard — Part 2: Characterization of two spinning rotor gauges, MAPAN-J. Metrol. Soc India, 24(2) (2009) 111–118.

    Google Scholar 

  27. S. Dogra, J. Singh, A. Lodh, N. Dilawar and A.K. Bandyopadhyay, A comparative approach for the characterization of a pneumatic piston gauge up to 8 MPa using finite element calculations, Meas. Sci. Technol. 22 (2011) 025103.

    Article  ADS  Google Scholar 

  28. D.A. Vijayakumar, O. Prakash and R.K. Sharma, Establishment of a force balanced piston gauge for very low gauge and absolute pressure measurements at NPL, India, Journal of Physics: Conference Series, 390 (2012) 012013.

    Google Scholar 

  29. J. Singh, N.D. Sharma and O. Prakash, Establishment of High Pressure Pneumatic Standard up to 40 MPa at NPLI, MAPAN-J. Metrol. Soc India, 27(2) (2012)113–121.

    Google Scholar 

  30. N.D. Sharma, D.A. Vijayakumar, J. Singh, A. Kumar, D.R. Sharma, and A.K. Bandyopadhyay, Establishing a continuous chain of traceability for pressure measurements up to 40 MPa, NCSLI Measure J. Meas. Sci., 8(1) (2013) 55–61.

    Google Scholar 

  31. CIPM MRA document, http://www.bipm.org/en/cipm-mra/cipm-mra-documents/ (accessed on Feb 6, 2018).

  32. Calibration and measurement capabilities, http://www.bipm.org/exalead_kcdb/exa_kcdb.jsp?_p=AppC&_q=India&x=68&y=9 (accessed on Feb 6, 2018).

  33. International Key Comparisons, http://www.bipm.org/exalead_kcdb/exa_kcdb.jsp?_p=AppB&_q=India&x=65&y=6 (accessed on Feb 6, 2018).

  34. J.K.N. Sharma and K.K. Jain, Use of strain gauge pressure transducer as working pressure standard upto 500 MPa, Sensors and Actuators 11 (1986) 275–282.

    Article  Google Scholar 

  35. J.K.N. Sharma, K.K. Jain, A.K. Bandyopadhyay and J. Jager, International intercomparison of pressure standards in the pneumatic pressure region 0.4-4.0 MPa between NPL (India) and PTB (FRG), J. Phys. E: Sci. Instrum., 21 (1988) 635–641.

    Article  ADS  Google Scholar 

  36. J.K. N. Sharma, K.K. Jain, W.E. Bean, B.E. Welch and R.J. Lazos, Effects of viscosity, temperature, and rate of rotation on pressure generated by a controlled clearance piston gauge, Rev. Sci. Instrum., 56(4) (1984) 563–569.

    Article  ADS  Google Scholar 

  37. J.K. N. Sharma, K.K. Jain and A.K. Bandyopadhyay, Intercomparison of pneumatic differential pressure measurements at 30–150 kPa at high line pressure upto 7.5 MPa, High Temp. High Press., 21 (1989) 627–636.

    Google Scholar 

  38. K.K. Jain, C.D. Ehrlich, and J. Houck, Intercomparison of hydraulic pressure measurements to 28 MPa using a single piston gauge in the controlled clearance, reentrant and simple configuration, Rev. Sci. Instrum., 63 (1992) 3127–3135.

    Article  ADS  Google Scholar 

  39. K.K. Jain, C. Ehrlich and J. Houck and J.K.N. Sharma, Meas. Sci. Technol., 4 (1993), 249.

    Article  ADS  Google Scholar 

  40. J.K.N. Sharma, K.K. Jain, C.D. Ehrlich, J.C. Houck and D.B. Ward, An intercomparison between NPL (India) and NIST (USA) pressure standards in the hydraulic pressure region upto 26 MPa, J. Res. of Nasl. Inst. of Stand. Technol, 99 (1994) 725–729.

    Article  Google Scholar 

  41. APLAC Pressure inter laboratory comparison, APM006—Jan, APLAC pressure program, 1999.

  42. A.K. Bandyopadhyay, S.Y. Woo, M. Fitzgerald, J. Man, A. Ooiwa, M. Jescheck, W. Jian, C.S. Fatt, T.K. Chan, K. Moore and A.E. El-Tawil, Results of the APMP pressure key comparison APMP.M.P.K1c in gas media and gauge mode from 0.4 to 4.0 MPa, Metrologia Technical Supplement, 40 (2003) 07002.

    Article  ADS  Google Scholar 

  43. W. Sabuga, M. Bergoglio, T. Rabault, B. Waller, J.C. Torres, D.A. Olson, A. Agarwal, T. Kobata and A.K. Bandyopadhyay, Final report on key comparison CCM.P-K7 in the range 10 MPa to 100 MPa of hydraulic gauge pressure, Metrologia 42 (2005) 07005.

    Article  ADS  Google Scholar 

  44. T. Kobata, A.K. Bandyopadhyay, K. Moore, A.E. Alaaeldin, W.S. Yong, T.K. Chan, W. Jian, J. Man J, C.N. Ngoc, F.C. Soo, P. Wenda, A. Mohamad, W. Sabuga, C. Tawat, H.C. Chuan and P. Zhang, Final report on key comparison APMP.M.P-K7 in hydraulic gauge pressure from 10 MPa to 100 MPa, Metrologia, 42 (2005) 07006.

    Article  ADS  Google Scholar 

  45. R.G. Driver, D.A. Olson, S. Yadav, A.K. Bandyopadhyay, Final Report on APMP.SIM.M.P-K7: bilateral comparison between NIST (USA) and NPLI (India) in the hydraulic pressure region 40 MPa to 200 MPa, Metrologia Tech. Suppl., 43 (2006) (07003) 1–15.

    Article  ADS  Google Scholar 

  46. K. Dapkeviciene, W. Sabuga, B. Waller, P. Farar, Yu. Kiselev, K. Saczuk and I. Sandu, Final Report on Regional Key Comparison, COOMET.M.P-K2, In the Pressure Range 10 MPa to 100 MPa Hydraulic gauge pressure. Metrologia 48 (2011) 07010.

    Article  ADS  Google Scholar 

  47. BIPM Key comparison database, CCM. P.K-7 Final Report. https://kcdb.bipm.org/appendixb/appbresults/ccm.p-k7/m.p-k7_may11.pdf (accessed on Feb 6, 2018)

  48. W. Sabuga, D.A. Olson, J. C. Torres, S. Yadav, Y. Jin, T. Kobata and P. Otal, Final report on key comparison CCM. P-K13 in the range 50 MPa to 500 MPa of hydraulic gauge pressure. Metrologia 49 (2012) 070006.

    Article  Google Scholar 

  49. H. Kajikawa, T. Kobata, S. Yadav, W. Jian, T. Changpan, N. Owen, L. Yanhua, C.C. Hung, G. Ginanjar, K.E. Kanatovich and I.M. Choi, Final report on key comparison APMP.M.P-K13 in hydraulic gauge pressure from 50 MPa to 500 MPa, Metrologia 52 (2015) 07003.

    Article  ADS  Google Scholar 

  50. BIPM Key comparison database, CCM. P.K-13 Final Report. https://kcdb.bipm.org/AppendixB/appbresults/ccm.p-k13/m.p-k13_mar15.pdf (accessed on Feb 6, 2018).

  51. R. Driver, D. Olson, N. Dilawar, and A. Bandyopadhyay, Final report on Key Comparison APMP.SIM.M.P-K1c: Bilateral comparison between NIST(USA) and NPLI (India) in the pneumatic pressure region 0.4 to 4 MPa, Metrologia, 44 (2007) 1A 07002.

    Article  ADS  Google Scholar 

  52. A.K. Bandyopadhyay, S. Woo., M. Fitzgerald, J. Man, A. Ooiwa, M. Jescheck, W. Jian, C. Fatt, T. Chan, and K. Moore, Final report of APMP pressure key comparison (APMP.M.P-K6) in gas media and gauge mode from 20 kPa to 105 kPa, Metrologia, 45 (2008) 1A 07001.

    Article  ADS  Google Scholar 

  53. D.A. Olson, P.J. Abbott, K. Jousten, F.J. Redgrave, P. Mohan and S.S. Hong, Final report of key comparison CCM.P-K3: absolute pressure measurements in gas from 3 × 10−6 Pa to 9 × 10−4 Pa, Metrologia, 47 (2010) 07004.

    Article  ADS  Google Scholar 

  54. K. Jousten, K. Arai, U. Becker, O. Bodnar, F. Boineau, J. A. Fedchak, V. Gorobey, Wu Jian, D. Mari, P. Mohan, J. Setina, B. Toman, M. Vičar, Y.H. Yan, Final report of key comparison CCM.P-K12 for very low helium flow rates (leak rates), Metrologia, 50(IA) (2013) 07001.

    Article  ADS  Google Scholar 

  55. Details of calibration rates http://www.nplindia.in/calibration-charges-d106a-pressure-vaccum-and-ultrasonic-metrology-wef01042018 (accessed on May 11, 2018).

  56. General requirements for the competence of testing and calibration laboratories, ISO / IEC 17025: 2005.

  57. Procedures for establishing and maintaining the APLAC Mutual Recognition Arrangement amongst accreditation bodies, APLAC MRA001, 2007.

  58. Proficiency Testing by Interlaboratory Comparison: Part—1: development and operation of proficiency testing schemes. part—2: selection and use of proficiency testing schemes by laboratory accreditation bodies, ISO / IEC 43: 1997.

  59. S. Yadav and A.K. Bandyopadhyay, Proficiency testing (PT) program under NABL in the pressure range 7–70 MPa, Metrology and Measurement Systems, V-XII(3) (2005) 323–340.

  60. S. Yadav and A.K. Bandyopadhyay, Proficiency testing program under NABL in the pressure range 7–70 MPa using a dead weight tester, Med. J. Meas. Contrl., 1(3) (2005) 138–151.

    Google Scholar 

  61. S. Yadav and A.K. Bandyopadhyay, Interlaboratory comparison in the pressure range 7–70 MPa using digital pressure calibrator, MAPAN-J. Metrol. Soc India, 20(4) (2005) 297–310.

    Google Scholar 

  62. S. Yadav, O. Prakash, V.K. Gupta, B.V. Kumaraswamy and A.K. Bandyopadhyay, Evaluation of interlaboratory performance through proficiency testing using pressure dial gauge in the hydraulic pressure measurement up to 70 MPa, MAPAN-J. Metrol. Soc India, 23 (2008) 79–99.

    Google Scholar 

  63. S. Yadav and A.K. Bandyopadhyay, Evaluation of laboratory performance through interlaboratory comparison, MAPAN-J. Metrol. Soc India, 24 (2009) 125–138.

    Google Scholar 

  64. S. Yadav and A.K. Bandyopadhyay, Assessment of laboratory performance in external proficiency testing in the pressure range up to 60 MPa, Measure, 4(1) (2009) 42–51.

    Google Scholar 

  65. S. Yadav, B.V. Kumaraswamy, V.K. Gupta and A.K. Bandyopadhyay, Least squares best fit line method for the evaluation of measurement uncertainty with electromechanical transducers (EMT) with Electrical Outputs (EO), MAPAN-J. Metrol. Soc India 25 (2010) 97–106.

    Google Scholar 

  66. S. Yadav, V.K. Gupta and A.K. Bandyopadhyay, Standardization of pressure calibration (7–70 MPa) using digital pressure calibrator, Journal of Scientific & Industrial Research, 69 (2010) 2–-33.

    Google Scholar 

  67. Arun Vijayakumar et al, Proficiency Testing Program in the Barometric Pressure Region, NPL Annual Report, p 80, 2011.

  68. S. Yadav, V.K. Gupta and A.K. Bandyopadhyay, Standardization of pressure measurement using pressure balance as transfer standard, MAPAN-J. Metrol. Soc India, 26 (2011)133–151.

    Google Scholar 

  69. J. Singh, N.D. Sharma, A. Kumar and A.K. Bandyopadhyay, Report of the Proficiency Testing in the Pneumatic Pressure Region up to 5 MPa, MAPAN-J. Metrol. Soc India, 29(3) (2014) 213–222.

    Google Scholar 

  70. A.K. Bandyopadhyay, P. Hilsch and J. Jager, Use of controlled clearance balances with highly viscous pressure transmitting media, PTB-Mitteilungen, 97 (1987) 264–269.

    Google Scholar 

  71. J.K.N. Sharma, K.K. Jain and A.K. Bandyopadhyay, A review of gas-operated piston gauges, Rev. Sci. Instrum., 59 (1988) 2063.

    Article  ADS  Google Scholar 

  72. J.K.N. Sharma, K.K. Jain, H.N.P. Podda, High pressure measurement with simple piston gauge in static condition, Pramana, 42(3) (1994) 271–282.

    Article  ADS  Google Scholar 

  73. K.K. Jain and S. Yadav, J. Instrum. Soc. of India, 26(3) (1996) 525–529.

    Google Scholar 

  74. S. Yadav, D.A. Vijayakumar and A.C. Gupta, Computer software for calibration of industrial and master simple / reentrant type piston gauges, MAPAN-J. Metrol. Soc India, 12 (1997) 101–104.

    Google Scholar 

  75. D.A. Vijaykumar, S. Yadav, R.K. Sharma and A.C. Gupta, Studies on pressure measuring equipment form 100 mbar to 5000 bar both absolute and gauge pressures, Journal of Instrument Society of India, 27(4) (1998) 269–277.

    Google Scholar 

  76. Y. Kumar, V. Kumar, K.K. Jain and S.C. Kashyap, A capacitive pressure gauge as a reliable transfer pressure standards, Sensors and Actuators, B55 (1999) 217–22.

    Article  Google Scholar 

  77. S. Yadav, D.A. Vijayakumar, A.K. Bandyopadhyay and A.C. Gupta, A proposal for the establishment of measurement uncertainty of pressure dial gauges and transducers, Cal Lab: The International Journal of Metrology, (2000) 32–43.

  78. S. Yadav, J. Matsuda and L.P.L. Chitarage, Vision and mechatronics. studies on uncertainty evaluation in straightness measurement, J Rob Mechatron,13 (2001) 643–650.

    Article  Google Scholar 

  79. S. Yadav, O. Prakash, V.K. Gupta and A.K. Bandyopadhyay, Studies on the stabilities of various types of industrial pressure measuring devices, J. Sci. and Indusl. Res., 65(9) (2006) 721–724.

    Google Scholar 

  80. S. Yadav and A.K. Bandyopadhyay, A proposal for evaluation of associated uncertainties in calibration of direct pressure indicating electromechanical devices, Callab- The International Journal of Metrology, (2006) 32–37.

  81. S. Yadav, Characterization of dead weight testers and computation of associated uncertainties: a case study of contemporary techniques, Metrology and Measurement Systems, 14 (2007) 453–469.

    Google Scholar 

  82. S. Yadav, M. Singh, O. Prakash, A.K. Bandyopadhyay and V. R. Singh, Ultrasonic studies in high pressure transmitting fluids used for the hydrostatic pressure measurements up to 1.0 GPa, Int. J. Acoustics and Vibration (IJAV), 13(3) (2008) 125–131.

  83. S. Yadav, V.K. Gupta and A.K. Bandyopadhyay, Investigations on measurement uncertainty and stability of pressure dial gauges and transducers, Measurement Science Review 10 (2010) 130–135.

    Article  ADS  Google Scholar 

  84. S. Sadana, S. Yadav, N. Jha, V.K. Gupta, R. Agarwal, A.K. Bandyopadhyay and T.K. Saxena, A computer controlled precision high pressure measuring system, Measurement Science Review, 11 (2011) 98–202.

    Article  Google Scholar 

  85. S. Yadav, V. K. Gupta, L. Kumar and A.K. Bandyopadhyay, Studies on the stability of the industrial pressure balances for hydrostatic pressure measurement up to 100 MPa, J. Inst. Eng. India Ser. C, 94(1) (2013) 75–81.

    Article  Google Scholar 

  86. S. Yadav, Uncertainty evaluation in the characterisation of pressure balances: a review of the current techniques, Lab World Magazine, 3(3) (2014) 5–14.

    Google Scholar 

  87. A. Kumar, S. Yadav and R. Agarwal, Design and development of a pressure transducer for high hydrostatic pressure measurements up to 200 MPa, J. Inst. Eng. India Ser. C, 98(4) (2016) 413–420.

    Article  Google Scholar 

  88. V. Kumar and S Yadav, Studies on use of lead iron tungstate-lead titanate relaxor binary system as a pressure sensing material, Sensors and Actuators A: Physical Sciences, 258 (2017) 101–104.

    Article  Google Scholar 

  89. A. Zafer, S. Yadav, A. Sanjid, L. Kumar and R.K. Sharma, Volume ratio and pressure drop on hydraulic dynamic pressure calibration system. Journal of Mechanical Science and Technology 31(8) (2017) 3769–3775.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to all the group members of the PVM group, past and present who have directly or indirectly contributed in the development of PVM facilities. Thanks are also due to all funding agencies that have provided partial grants for the same time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Zafer, A., Kumar, A. et al. Role of National Pressure and Vacuum Metrology in Indian Industrial Growth and Their Global Metrological Equivalence. MAPAN 33, 347–359 (2018). https://doi.org/10.1007/s12647-018-0270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-018-0270-8

Keywords

Navigation